Cargando…

Topical Simvastatin as Host-Directed Therapy against Severity of Cutaneous Leishmaniasis in Mice

We recently demonstrated that statins mediate protection against intracellular pathogens, Mycobacterium tuberculosis and Listeria monocytogenes in mice. Here, we investigated the immunomodulatory potential of simvastatin as a topical or systemic host-directed drug therapy in controlling inflammatory...

Descripción completa

Detalles Bibliográficos
Autores principales: Parihar, Suraj P., Hartley, Mary-Anne, Hurdayal, Ramona, Guler, Reto, Brombacher, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025842/
https://www.ncbi.nlm.nih.gov/pubmed/27632901
http://dx.doi.org/10.1038/srep33458
Descripción
Sumario:We recently demonstrated that statins mediate protection against intracellular pathogens, Mycobacterium tuberculosis and Listeria monocytogenes in mice. Here, we investigated the immunomodulatory potential of simvastatin as a topical or systemic host-directed drug therapy in controlling inflammatory responses in an experimental mouse model of cutaneous leishmaniasis caused by Leishmania major (LV39). In an ear infection model, topical application of simvastatin directly on established lesions significantly reduced severity of the disease reflected by ear lesion size and ulceration. The host protective effect was further accompanied by decreased parasite burden in the ear and draining lymph nodes in both BALB/c and C57BL/6 mice. Pre-treatment of these mice on a low-fat cholesterol diet and systemic simvastatin also reduced footpad swelling, as well as parasite burdens and ulceration/necrosis in the more robust footpad infection model, demonstrating the prophylactic potential of simvastatin for cutaneous leishmaniasis. Mechanistically, following L. major infection, simvastatin-treated primary macrophages responded with significantly reduced cholesterol levels and increased production of hydrogen peroxide. Furthermore, simvastatin-treated macrophages displayed enhanced phagosome maturation, as revealed by increased LAMP-3 expression in fluorescent microscopy and Western blot analysis. These findings demonstrate that simvastatin treatment enhances host protection against L. major by increasing macrophage phagosome maturation and killing effector functions.