Cargando…

Prediction of Protein Structure Using Surface Accessibility Data

An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance‐to‐surface information encoded in the sPRE data in the chemica...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartlmüller, Christoph, Göbl, Christoph, Madl, Tobias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026166/
https://www.ncbi.nlm.nih.gov/pubmed/27560616
http://dx.doi.org/10.1002/anie.201604788
_version_ 1782454087363592192
author Hartlmüller, Christoph
Göbl, Christoph
Madl, Tobias
author_facet Hartlmüller, Christoph
Göbl, Christoph
Madl, Tobias
author_sort Hartlmüller, Christoph
collection PubMed
description An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance‐to‐surface information encoded in the sPRE data in the chemical shift‐based CS‐Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach.
format Online
Article
Text
id pubmed-5026166
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-50261662016-10-03 Prediction of Protein Structure Using Surface Accessibility Data Hartlmüller, Christoph Göbl, Christoph Madl, Tobias Angew Chem Int Ed Engl Communications An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance‐to‐surface information encoded in the sPRE data in the chemical shift‐based CS‐Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach. John Wiley and Sons Inc. 2016-08-25 2016-09-19 /pmc/articles/PMC5026166/ /pubmed/27560616 http://dx.doi.org/10.1002/anie.201604788 Text en © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Hartlmüller, Christoph
Göbl, Christoph
Madl, Tobias
Prediction of Protein Structure Using Surface Accessibility Data
title Prediction of Protein Structure Using Surface Accessibility Data
title_full Prediction of Protein Structure Using Surface Accessibility Data
title_fullStr Prediction of Protein Structure Using Surface Accessibility Data
title_full_unstemmed Prediction of Protein Structure Using Surface Accessibility Data
title_short Prediction of Protein Structure Using Surface Accessibility Data
title_sort prediction of protein structure using surface accessibility data
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026166/
https://www.ncbi.nlm.nih.gov/pubmed/27560616
http://dx.doi.org/10.1002/anie.201604788
work_keys_str_mv AT hartlmullerchristoph predictionofproteinstructureusingsurfaceaccessibilitydata
AT goblchristoph predictionofproteinstructureusingsurfaceaccessibilitydata
AT madltobias predictionofproteinstructureusingsurfaceaccessibilitydata