Cargando…
Porcine lie detectors: Automatic quantification of posture state and transitions in sows using inertial sensors
This paper presents a novel approach to automated classification and quantification of sow postures and posture transitions that may enable large scale and accurate continuous behaviour assessment on farm. Automatic classification and quantification of postures and posture transitions in domestic an...
Autores principales: | Thompson, Robin, Matheson, Stephanie M., Plötz, Thomas, Edwards, Sandra A., Kyriazakis, Ilias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026400/ https://www.ncbi.nlm.nih.gov/pubmed/27667883 http://dx.doi.org/10.1016/j.compag.2016.07.017 |
Ejemplares similares
-
Automatic Classification of Squat Posture Using Inertial Sensors: Deep Learning Approach
por: Lee, Jaehyun, et al.
Publicado: (2020) -
Multi-part segmentation for porcine offal inspection with auto-context and adaptive atlases
por: McKenna, Stephen, et al.
Publicado: (2018) -
A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory Disease in Pigs Using Multiple Environmental Sensors
por: Cowton, Jake, et al.
Publicado: (2018) -
Measuring postural stability with an inertial sensor: validity and sensitivity
por: Neville, Christopher, et al.
Publicado: (2015) -
Inertial Sensor Based Analysis of Lie-to-Stand Transfers in Younger and Older Adults
por: Schwickert, Lars, et al.
Publicado: (2016)