Cargando…
Interfacial Activity of Gold Nanoparticles Coated with a Polymeric Patchy Shell and the Role of Spreading Agents
[Image: see text] Gold patchy nanoparticles (PPs) were prepared under surfactant-free conditions by functionalization with a binary ligand mixture of polystyrene and poly(ethylene glycol) (PEG) as hydrophobic and hydrophilic ligands, respectively. The interfacial activity of PPs was compared to that...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026457/ https://www.ncbi.nlm.nih.gov/pubmed/27656691 http://dx.doi.org/10.1021/acsomega.6b00131 |
_version_ | 1782454131762397184 |
---|---|
author | Fernández-Rodríguez, Miguel A. Percebom, Ana M. Giner-Casares, Juan J. Rodríguez-Valverde, Miguel A. Cabrerizo-Vílchez, Miguel A. Liz-Marzán, Luis M. Hidalgo-Álvarez, Roque |
author_facet | Fernández-Rodríguez, Miguel A. Percebom, Ana M. Giner-Casares, Juan J. Rodríguez-Valverde, Miguel A. Cabrerizo-Vílchez, Miguel A. Liz-Marzán, Luis M. Hidalgo-Álvarez, Roque |
author_sort | Fernández-Rodríguez, Miguel A. |
collection | PubMed |
description | [Image: see text] Gold patchy nanoparticles (PPs) were prepared under surfactant-free conditions by functionalization with a binary ligand mixture of polystyrene and poly(ethylene glycol) (PEG) as hydrophobic and hydrophilic ligands, respectively. The interfacial activity of PPs was compared to that of homogeneous hydrophilic nanoparticles (HPs), fully functionalized with PEG, by means of pendant drop tensiometry at water/air and water/decane interfaces. We compared interfacial activities in three different spreading agents: water, water/chloroform, and pure chloroform. We found that the interfacial activity of PPs was close to zero (∼2 mN/m) when the spreading agent was water and increased to ∼14 mN/m when the spreading agent was water/chloroform. When the nanoparticles were deposited with pure chloroform, the interfacial activity reached up to 60 mN/m by compression. In all cases, PPs exhibited higher interfacial activity than HPs, which were not interfacially active, regardless of the spreading agent. The interfacial activity at the water/decane interface was found to be significantly lower than that at the water/air interface because PPs aggregate in decane. Interfacial dilatational rheology showed that PPs form a stronger elastic shell at the pendant drop interface, compared to HPs. The significantly high interfacial activity obtained with PPs in this study highlights the importance of the polymeric patchy shell and the spreading agent. |
format | Online Article Text |
id | pubmed-5026457 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-50264572016-09-19 Interfacial Activity of Gold Nanoparticles Coated with a Polymeric Patchy Shell and the Role of Spreading Agents Fernández-Rodríguez, Miguel A. Percebom, Ana M. Giner-Casares, Juan J. Rodríguez-Valverde, Miguel A. Cabrerizo-Vílchez, Miguel A. Liz-Marzán, Luis M. Hidalgo-Álvarez, Roque ACS Omega [Image: see text] Gold patchy nanoparticles (PPs) were prepared under surfactant-free conditions by functionalization with a binary ligand mixture of polystyrene and poly(ethylene glycol) (PEG) as hydrophobic and hydrophilic ligands, respectively. The interfacial activity of PPs was compared to that of homogeneous hydrophilic nanoparticles (HPs), fully functionalized with PEG, by means of pendant drop tensiometry at water/air and water/decane interfaces. We compared interfacial activities in three different spreading agents: water, water/chloroform, and pure chloroform. We found that the interfacial activity of PPs was close to zero (∼2 mN/m) when the spreading agent was water and increased to ∼14 mN/m when the spreading agent was water/chloroform. When the nanoparticles were deposited with pure chloroform, the interfacial activity reached up to 60 mN/m by compression. In all cases, PPs exhibited higher interfacial activity than HPs, which were not interfacially active, regardless of the spreading agent. The interfacial activity at the water/decane interface was found to be significantly lower than that at the water/air interface because PPs aggregate in decane. Interfacial dilatational rheology showed that PPs form a stronger elastic shell at the pendant drop interface, compared to HPs. The significantly high interfacial activity obtained with PPs in this study highlights the importance of the polymeric patchy shell and the spreading agent. American Chemical Society 2016-08-31 /pmc/articles/PMC5026457/ /pubmed/27656691 http://dx.doi.org/10.1021/acsomega.6b00131 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Fernández-Rodríguez, Miguel A. Percebom, Ana M. Giner-Casares, Juan J. Rodríguez-Valverde, Miguel A. Cabrerizo-Vílchez, Miguel A. Liz-Marzán, Luis M. Hidalgo-Álvarez, Roque Interfacial Activity of Gold Nanoparticles Coated with a Polymeric Patchy Shell and the Role of Spreading Agents |
title | Interfacial Activity of Gold Nanoparticles Coated
with a Polymeric Patchy Shell and the Role of Spreading Agents |
title_full | Interfacial Activity of Gold Nanoparticles Coated
with a Polymeric Patchy Shell and the Role of Spreading Agents |
title_fullStr | Interfacial Activity of Gold Nanoparticles Coated
with a Polymeric Patchy Shell and the Role of Spreading Agents |
title_full_unstemmed | Interfacial Activity of Gold Nanoparticles Coated
with a Polymeric Patchy Shell and the Role of Spreading Agents |
title_short | Interfacial Activity of Gold Nanoparticles Coated
with a Polymeric Patchy Shell and the Role of Spreading Agents |
title_sort | interfacial activity of gold nanoparticles coated
with a polymeric patchy shell and the role of spreading agents |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026457/ https://www.ncbi.nlm.nih.gov/pubmed/27656691 http://dx.doi.org/10.1021/acsomega.6b00131 |
work_keys_str_mv | AT fernandezrodriguezmiguela interfacialactivityofgoldnanoparticlescoatedwithapolymericpatchyshellandtheroleofspreadingagents AT percebomanam interfacialactivityofgoldnanoparticlescoatedwithapolymericpatchyshellandtheroleofspreadingagents AT ginercasaresjuanj interfacialactivityofgoldnanoparticlescoatedwithapolymericpatchyshellandtheroleofspreadingagents AT rodriguezvalverdemiguela interfacialactivityofgoldnanoparticlescoatedwithapolymericpatchyshellandtheroleofspreadingagents AT cabrerizovilchezmiguela interfacialactivityofgoldnanoparticlescoatedwithapolymericpatchyshellandtheroleofspreadingagents AT lizmarzanluism interfacialactivityofgoldnanoparticlescoatedwithapolymericpatchyshellandtheroleofspreadingagents AT hidalgoalvarezroque interfacialactivityofgoldnanoparticlescoatedwithapolymericpatchyshellandtheroleofspreadingagents |