Cargando…

Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9

Binding specificity of Cas9–guide RNA complexes to DNA is important for genome-engineering applications; however, how mismatches influence target recognition/rejection kinetics is not well understood. Here we used single-molecule FRET to probe real-time interactions between Cas9–RNA and DNA targets....

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Digvijay, Sternberg, Samuel H., Fei, Jingyi, Doudna, Jennifer A., Ha, Taekjip
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027287/
https://www.ncbi.nlm.nih.gov/pubmed/27624851
http://dx.doi.org/10.1038/ncomms12778
Descripción
Sumario:Binding specificity of Cas9–guide RNA complexes to DNA is important for genome-engineering applications; however, how mismatches influence target recognition/rejection kinetics is not well understood. Here we used single-molecule FRET to probe real-time interactions between Cas9–RNA and DNA targets. The bimolecular association rate is only weakly dependent on sequence; however, the dissociation rate greatly increases from <0.006 s(−1) to >2 s(−1) upon introduction of mismatches proximal to protospacer-adjacent motif (PAM), demonstrating that mismatches encountered early during heteroduplex formation induce rapid rejection of off-target DNA. In contrast, PAM-distal mismatches up to 11 base pairs in length, which prevent DNA cleavage, still allow formation of a stable complex (dissociation rate <0.006 s(−1)), suggesting that extremely slow rejection could sequester Cas9–RNA, increasing the Cas9 expression level necessary for genome-editing, thereby aggravating off-target effects. We also observed at least two different bound FRET states that may represent distinct steps in target search and proofreading.