Cargando…

Taxa of the Nasal Microbiome Are Associated with Influenza-Specific IgA Response to Live Attenuated Influenza Vaccine

Live attenuated influenza vaccine (LAIV) has demonstrated varying levels of efficacy against seasonal influenza; however, LAIV may be used as a tool to measure interactions between the human microbiome and a live, replicating virus. To increase our knowledge of this interaction, we measured changes...

Descripción completa

Detalles Bibliográficos
Autores principales: Salk, Hannah M., Simon, Whitney L., Lambert, Nathaniel D., Kennedy, Richard B., Grill, Diane E., Kabat, Brian F., Poland, Gregory A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028048/
https://www.ncbi.nlm.nih.gov/pubmed/27643883
http://dx.doi.org/10.1371/journal.pone.0162803
Descripción
Sumario:Live attenuated influenza vaccine (LAIV) has demonstrated varying levels of efficacy against seasonal influenza; however, LAIV may be used as a tool to measure interactions between the human microbiome and a live, replicating virus. To increase our knowledge of this interaction, we measured changes to the nasal microbiome in subjects who received LAIV to determine if associations between influenza-specific IgA production and the nasal microbiome exist after immunization with a live virus vaccine. The anterior nares of 47 healthy subjects were swabbed pre- (Day 0) and post- (Days 7 and 28) LAIV administration, and nasal washes were conducted on Days 0 and 28. We performed next-generation sequencing on amplified 16s rRNA genes and measured mucosal influenza-specific IgA titers via enzyme-linked immunosorbent assay (ELISA). A significant increase in alpha diversity was identified (Observed, CHAO, and ACE) between Days 7 vs 0 (p-values = 0.017, 0.005, 0.005, respectively) and between Days 28 vs 0 (p-values = 0.054, 0.030, 0.050, respectively). Several significant associations between the presence of different microbial species, including Lactobacillus helveticus, Prevotella melaninogenica, Streptococcus infantis, Veillonella dispar, and Bacteroides ovatus, and influenza-specific H1 and H3 IgA antibody response were demonstrated. These data suggest that LAIV alters the nasal microbiome, allowing several less-abundant OTUs to establish a community niche. Additionally, specific alterations in the nasal microbiome are significantly associated with variations in influenza-specific IgA antibody production and could be clinically relevant.