Cargando…

Determining crystal structures through crowdsourcing and coursework

We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Horowitz, Scott, Koepnick, Brian, Martin, Raoul, Tymieniecki, Agnes, Winburn, Amanda A., Cooper, Seth, Flatten, Jeff, Rogawski, David S., Koropatkin, Nicole M., Hailu, Tsinatkeab T., Jain, Neha, Koldewey, Philipp, Ahlstrom, Logan S., Chapman, Matthew R., Sikkema, Andrew P., Skiba, Meredith A., Maloney, Finn P., Beinlich, Felix R. M., Popović, Zoran, Baker, David, Khatib, Firas, Bardwell, James C. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028414/
https://www.ncbi.nlm.nih.gov/pubmed/27633552
http://dx.doi.org/10.1038/ncomms12549
_version_ 1782454366096064512
author Horowitz, Scott
Koepnick, Brian
Martin, Raoul
Tymieniecki, Agnes
Winburn, Amanda A.
Cooper, Seth
Flatten, Jeff
Rogawski, David S.
Koropatkin, Nicole M.
Hailu, Tsinatkeab T.
Jain, Neha
Koldewey, Philipp
Ahlstrom, Logan S.
Chapman, Matthew R.
Sikkema, Andrew P.
Skiba, Meredith A.
Maloney, Finn P.
Beinlich, Felix R. M.
Popović, Zoran
Baker, David
Khatib, Firas
Bardwell, James C. A.
author_facet Horowitz, Scott
Koepnick, Brian
Martin, Raoul
Tymieniecki, Agnes
Winburn, Amanda A.
Cooper, Seth
Flatten, Jeff
Rogawski, David S.
Koropatkin, Nicole M.
Hailu, Tsinatkeab T.
Jain, Neha
Koldewey, Philipp
Ahlstrom, Logan S.
Chapman, Matthew R.
Sikkema, Andrew P.
Skiba, Meredith A.
Maloney, Finn P.
Beinlich, Felix R. M.
Popović, Zoran
Baker, David
Khatib, Firas
Bardwell, James C. A.
author_sort Horowitz, Scott
collection PubMed
description We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.
format Online
Article
Text
id pubmed-5028414
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50284142016-09-26 Determining crystal structures through crowdsourcing and coursework Horowitz, Scott Koepnick, Brian Martin, Raoul Tymieniecki, Agnes Winburn, Amanda A. Cooper, Seth Flatten, Jeff Rogawski, David S. Koropatkin, Nicole M. Hailu, Tsinatkeab T. Jain, Neha Koldewey, Philipp Ahlstrom, Logan S. Chapman, Matthew R. Sikkema, Andrew P. Skiba, Meredith A. Maloney, Finn P. Beinlich, Felix R. M. Popović, Zoran Baker, David Khatib, Firas Bardwell, James C. A. Nat Commun Article We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality. Nature Publishing Group 2016-09-16 /pmc/articles/PMC5028414/ /pubmed/27633552 http://dx.doi.org/10.1038/ncomms12549 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Horowitz, Scott
Koepnick, Brian
Martin, Raoul
Tymieniecki, Agnes
Winburn, Amanda A.
Cooper, Seth
Flatten, Jeff
Rogawski, David S.
Koropatkin, Nicole M.
Hailu, Tsinatkeab T.
Jain, Neha
Koldewey, Philipp
Ahlstrom, Logan S.
Chapman, Matthew R.
Sikkema, Andrew P.
Skiba, Meredith A.
Maloney, Finn P.
Beinlich, Felix R. M.
Popović, Zoran
Baker, David
Khatib, Firas
Bardwell, James C. A.
Determining crystal structures through crowdsourcing and coursework
title Determining crystal structures through crowdsourcing and coursework
title_full Determining crystal structures through crowdsourcing and coursework
title_fullStr Determining crystal structures through crowdsourcing and coursework
title_full_unstemmed Determining crystal structures through crowdsourcing and coursework
title_short Determining crystal structures through crowdsourcing and coursework
title_sort determining crystal structures through crowdsourcing and coursework
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028414/
https://www.ncbi.nlm.nih.gov/pubmed/27633552
http://dx.doi.org/10.1038/ncomms12549
work_keys_str_mv AT horowitzscott determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT koepnickbrian determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT martinraoul determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT tymienieckiagnes determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT winburnamandaa determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT cooperseth determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT flattenjeff determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT rogawskidavids determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT koropatkinnicolem determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT hailutsinatkeabt determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT jainneha determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT koldeweyphilipp determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT ahlstromlogans determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT chapmanmatthewr determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT sikkemaandrewp determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT skibamereditha determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT maloneyfinnp determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT beinlichfelixrm determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT popoviczoran determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT bakerdavid determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT khatibfiras determiningcrystalstructuresthroughcrowdsourcingandcoursework
AT bardwelljamesca determiningcrystalstructuresthroughcrowdsourcingandcoursework