Cargando…

Halobacterial nano vesicles displaying murine bactericidal permeability-increasing protein rescue mice from lethal endotoxic shock

Bactericidal/permeability-increasing protein (BPI) had been shown to possess anti-inflammatory and endotoxin neutralizing activity by interacting with LPS of Gram-negative bacteria. The current study examines the feasibility of using murine BPI (mBPI) expressed on halophilic Archaeal gas vesicle nan...

Descripción completa

Detalles Bibliográficos
Autores principales: Balakrishnan, Arjun, DasSarma, Priya, Bhattacharjee, Oindrilla, Kim, Jong Myoung, DasSarma, Shiladitya, Chakravortty, Dipshikha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028748/
https://www.ncbi.nlm.nih.gov/pubmed/27646594
http://dx.doi.org/10.1038/srep33679
Descripción
Sumario:Bactericidal/permeability-increasing protein (BPI) had been shown to possess anti-inflammatory and endotoxin neutralizing activity by interacting with LPS of Gram-negative bacteria. The current study examines the feasibility of using murine BPI (mBPI) expressed on halophilic Archaeal gas vesicle nanoparticles (GVNPs) for the treatment of endotoxemia in high-risk patients, using a murine model of D-galactosamine-induced endotoxic shock. Halobacterium sp. NRC-1was used to express the N-terminal 199 amino acid residues of mBPI fused to the GVNP GvpC protein, and bound to the surface of the haloarchaeal GVNPs. Our results indicate that delivery of mBPIN-GVNPs increase the survival rate of mice challenged with lethal concentrations of lipopolysaccharide (LPS) and D-galactosamine. Additionally, the mBPIN-GVNP-treated mice displayed reduced symptoms of inflammation, including inflammatory anemia, recruitment of neutrophils, liver apoptosis as well as increased pro-inflammatory serum cytokine levels.