Cargando…
Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils
Interaction effect of temperature and litter input on SOM decomposition is poor understood, restricting accurate prediction of the dynamics and stocks of soil organic carbon under global warming. To address this knowledge gap, we conducted an incubation experiment by adding (13)C labeled leaf-litter...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028766/ https://www.ncbi.nlm.nih.gov/pubmed/27644258 http://dx.doi.org/10.1038/srep33814 |
Sumario: | Interaction effect of temperature and litter input on SOM decomposition is poor understood, restricting accurate prediction of the dynamics and stocks of soil organic carbon under global warming. To address this knowledge gap, we conducted an incubation experiment by adding (13)C labeled leaf-litter into a coniferous forest (CF) soil and a broadleaved forest (BF) soil. In this experiment, response of the temperature sensitivity (Q(10)) of SOM decomposition to the increase in litter input was investigated. The temperature dependences of priming effect (PE) and soil microbial community were analyzed. The Q(10) for CF soil significantly decreased from 2.41 in no-litter treatment to 2.05 in litter-added treatment and for BF soil from 2.14 to 1.82, suggesting that litter addition decreases the Q(10). PE in the CF soil was 24.9% at 20 °C and 6.2% at 30 °C, and in the BF soil the PE was 8.8% at 20 °C and −7.0% at 30 °C, suggesting that PE decreases with increasing temperature. Relative PE was positively related to the concentrations of Gram-negative bacterial and fungal PLFAs. This study moves a step forward in understanding warming effect on forest carbon cycling by highlighting interaction effect of litter input and warming on soil carbon cycling. |
---|