Cargando…
Liposome encapsulated perfluorohexane enhances radiotherapy in mice without additional oxygen supply
BACKGROUND: To investigate the effect of perfluorochemical preparations in enhancing radiotherapy, perfluocarbon nanoparticles were by encapsulating perfluorohexane into liposome [lip(PFH)]. METHODS: After intravenous injection, lip(PFH) could accumulate in the tumor site over time, with a prominent...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028944/ https://www.ncbi.nlm.nih.gov/pubmed/27646172 http://dx.doi.org/10.1186/s12967-016-1033-3 |
Sumario: | BACKGROUND: To investigate the effect of perfluorochemical preparations in enhancing radiotherapy, perfluocarbon nanoparticles were by encapsulating perfluorohexane into liposome [lip(PFH)]. METHODS: After intravenous injection, lip(PFH) could accumulate in the tumor site over time, with a prominent accumulation in tumor 24 h post injection. X-ray was delivered to the tumor site 24 h after the injection of lip(PFH) under room air. The experimental mice were randomized into four groups: control (saline), lip(PFH) (lip(PFH) only), X-ray (X-ray only), and lip(PFH) + X-ray (lip(PFH) with X-ray radiation). Tumor volume and histology were monitored to assess treatment efficacy. RESULTS: Tumor growth was significantly reduced in mice received lip(PFH) and X-ray compared with X-ray only. The histological data also revealed more destruction of tumor tissue in lip(PFH) + X-ray group compared with X-ray only. In addition, lip(PFH) did not show any significant tissue damage to major organs or induce significant liver/kidney dysfunction. CONCLUSIONS: Lip(PFH) could accumulate in the tumor site and enhance radiotherapy without additional oxygen supply. |
---|