Cargando…

Risk factors for differential outcome following directly observed treatment (DOT) of slum and non-slum tuberculosis patients: a retrospective cohort study

BACKGROUND: Brazil’s National Tuberculosis Control Program seeks to improve tuberculosis (TB) treatment in vulnerable populations. Slum residents are more vulnerable to TB due to a variety of factors, including their overcrowded living conditions, substandard infrastructure, and limited access to he...

Descripción completa

Detalles Bibliográficos
Autores principales: Snyder, Robert E., Marlow, Mariel A., Phuphanich, Melissa E., Riley, Lee W., Maciel, Ethel Leonor Noia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029075/
https://www.ncbi.nlm.nih.gov/pubmed/27647383
http://dx.doi.org/10.1186/s12879-016-1835-1
Descripción
Sumario:BACKGROUND: Brazil’s National Tuberculosis Control Program seeks to improve tuberculosis (TB) treatment in vulnerable populations. Slum residents are more vulnerable to TB due to a variety of factors, including their overcrowded living conditions, substandard infrastructure, and limited access to healthcare compared to their non-slum dwelling counterparts. Directly observed treatment (DOT) has been suggested to improve TB treatment outcomes among vulnerable populations, but the program’s differential effectiveness among urban slum and non-slum residents is not known. METHODS: We retrospectively compared the impact of DOT on TB treatment outcome in residents of slum and non-slum census tracts in Rio de Janeiro reported to the Brazilian Notifiable Disease Database in 2010. Patient residential addresses were geocoded to census tracts from the 2010 Brazilian Census, which were identified as slum (aglomerados subnormais -AGSN) and non-slum (non-AGSN) by the Census Bureau. Homeless and incarcerated cases as well as those geocoded outside the city’s limits were excluded from analysis. RESULTS: In 2010, 6,601 TB cases were geocoded within Rio de Janeiro; 1,874 (27.4 %) were residents of AGSN, and 4,794 (72.6 %) did not reside in an AGSN area. DOT coverage among AGSN cases was 35.2 % (n = 638), while the coverage in non-AGSN cases was 26.2 % (n = 1,234). Clinical characteristics, treatment, follow-up, cure, death and abandonment were similar in both AGSN and non-AGSN TB patients. After adjusting for covariates, AGSN TB cases on DOT had 1.67 (95 % CI: 1.17, 2.4) times the risk of cure, 0.61 (95 % CI: 0.41, 0.90) times the risk of abandonment, and 0.1 (95 % CI: 0.01, 0.77) times the risk of death from TB compared to non-AGSN TB cases not on DOT. CONCLUSION: While DOT coverage was low among TB cases in both AGSN and non-AGSN communities, it had a greater impact on TB cure rate in AGSN than in non-AGSN populations in the city of Rio de Janeiro.