Cargando…

SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice

Pregnancy is a complex physiological process tightly controlled by the interplay among hormones, morphogens, transcription factors, and signaling pathways. Although recent studies using genetically engineered mouse models have revealed that ligands and receptors of transforming growth factor beta (T...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodriguez, Amanda, Tripurani, Swamy K., Burton, Jason C., Clementi, Caterina, Larina, Irina, Pangas, Stephanie A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for the Study of Reproduction, Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029477/
https://www.ncbi.nlm.nih.gov/pubmed/27335065
http://dx.doi.org/10.1095/biolreprod.116.139477
_version_ 1782454520399265792
author Rodriguez, Amanda
Tripurani, Swamy K.
Burton, Jason C.
Clementi, Caterina
Larina, Irina
Pangas, Stephanie A.
author_facet Rodriguez, Amanda
Tripurani, Swamy K.
Burton, Jason C.
Clementi, Caterina
Larina, Irina
Pangas, Stephanie A.
author_sort Rodriguez, Amanda
collection PubMed
description Pregnancy is a complex physiological process tightly controlled by the interplay among hormones, morphogens, transcription factors, and signaling pathways. Although recent studies using genetically engineered mouse models have revealed that ligands and receptors of transforming growth factor beta (TGFbeta) and bone morphogenetic protein (BMP) signaling pathways are essential for multiple reproductive events during pregnancy, the functional role of SMAD transcription factors, which serve as the canonical signaling platform for the TGFbeta/BMP pathways, in the oviduct and uterus is undefined. Here, we used a mouse model containing triple conditional deletion of the BMP receptor signaling Smads (Smad1 and Smad5) and Smad4, the central mediator of both TGFbeta and BMP signaling, to investigate the role of the SMADs in reproductive tract structure and function in cells from the Amhr2 lineage. Unlike the respective single- or double-knockouts, female Smad1(flox/flox) Smad5(flox/flox) Smad4(flox/flox) Amhr2(cre/+)conditional knockout (i.e., Smad1/5/4-Amhr2-cre KO) mice are sterile. We discovered that Smad1/5/4-Amhr2-cre KO females have malformed oviducts that subsequently develop oviductal diverticuli. These oviducts showed dysregulation of multiple genes essential for oviduct and smooth muscle development. In addition, uteri from Smad1/5/4-Amhr2-cre KO females exhibit multiple defects in stroma, epithelium, and smooth muscle layers and fail to assemble a closed uterine lumen upon embryo implantation, with defective uterine decidualization that led to pregnancy loss at early to mid-gestation. Taken together, our study uncovers a new role for the SMAD transcription factors in maintaining the structural and functional integrity of oviduct and uterus, required for establishment and maintenance of pregnancy.
format Online
Article
Text
id pubmed-5029477
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Society for the Study of Reproduction, Inc.
record_format MEDLINE/PubMed
spelling pubmed-50294772017-08-01 SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice Rodriguez, Amanda Tripurani, Swamy K. Burton, Jason C. Clementi, Caterina Larina, Irina Pangas, Stephanie A. Biol Reprod Articles Pregnancy is a complex physiological process tightly controlled by the interplay among hormones, morphogens, transcription factors, and signaling pathways. Although recent studies using genetically engineered mouse models have revealed that ligands and receptors of transforming growth factor beta (TGFbeta) and bone morphogenetic protein (BMP) signaling pathways are essential for multiple reproductive events during pregnancy, the functional role of SMAD transcription factors, which serve as the canonical signaling platform for the TGFbeta/BMP pathways, in the oviduct and uterus is undefined. Here, we used a mouse model containing triple conditional deletion of the BMP receptor signaling Smads (Smad1 and Smad5) and Smad4, the central mediator of both TGFbeta and BMP signaling, to investigate the role of the SMADs in reproductive tract structure and function in cells from the Amhr2 lineage. Unlike the respective single- or double-knockouts, female Smad1(flox/flox) Smad5(flox/flox) Smad4(flox/flox) Amhr2(cre/+)conditional knockout (i.e., Smad1/5/4-Amhr2-cre KO) mice are sterile. We discovered that Smad1/5/4-Amhr2-cre KO females have malformed oviducts that subsequently develop oviductal diverticuli. These oviducts showed dysregulation of multiple genes essential for oviduct and smooth muscle development. In addition, uteri from Smad1/5/4-Amhr2-cre KO females exhibit multiple defects in stroma, epithelium, and smooth muscle layers and fail to assemble a closed uterine lumen upon embryo implantation, with defective uterine decidualization that led to pregnancy loss at early to mid-gestation. Taken together, our study uncovers a new role for the SMAD transcription factors in maintaining the structural and functional integrity of oviduct and uterus, required for establishment and maintenance of pregnancy. Society for the Study of Reproduction, Inc. 2016-06-22 2016-08 /pmc/articles/PMC5029477/ /pubmed/27335065 http://dx.doi.org/10.1095/biolreprod.116.139477 Text en © 2016 by the Society for the Study of Reproduction, Inc. http://creativecommons.org/licenses/by-nc/4.0/ This article is available under a Creative Commons License 4.0 (Attribution-Non-Commercial), as described at http://creativecommons.org/licenses/by-nc/4.0
spellingShingle Articles
Rodriguez, Amanda
Tripurani, Swamy K.
Burton, Jason C.
Clementi, Caterina
Larina, Irina
Pangas, Stephanie A.
SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice
title SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice
title_full SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice
title_fullStr SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice
title_full_unstemmed SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice
title_short SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice
title_sort smad signaling is required for structural integrity of the female reproductive tract and uterine function during early pregnancy in mice
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029477/
https://www.ncbi.nlm.nih.gov/pubmed/27335065
http://dx.doi.org/10.1095/biolreprod.116.139477
work_keys_str_mv AT rodriguezamanda smadsignalingisrequiredforstructuralintegrityofthefemalereproductivetractanduterinefunctionduringearlypregnancyinmice
AT tripuraniswamyk smadsignalingisrequiredforstructuralintegrityofthefemalereproductivetractanduterinefunctionduringearlypregnancyinmice
AT burtonjasonc smadsignalingisrequiredforstructuralintegrityofthefemalereproductivetractanduterinefunctionduringearlypregnancyinmice
AT clementicaterina smadsignalingisrequiredforstructuralintegrityofthefemalereproductivetractanduterinefunctionduringearlypregnancyinmice
AT larinairina smadsignalingisrequiredforstructuralintegrityofthefemalereproductivetractanduterinefunctionduringearlypregnancyinmice
AT pangasstephaniea smadsignalingisrequiredforstructuralintegrityofthefemalereproductivetractanduterinefunctionduringearlypregnancyinmice