Cargando…
A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM)
With the remarkable increase of genomic sequence data of microorganisms, novel tools are needed for comprehensive analyses of the big sequence data available. The self-organizing map (SOM) is an effective tool for clustering and visualizing high-dimensional data, such as oligonucleotide composition...
Autores principales: | Iwasaki, Yuki, Abe, Takashi, Wada, Kennosuke, Wada, Yoshiko, Ikemura, Toshimichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029494/ https://www.ncbi.nlm.nih.gov/pubmed/27694768 http://dx.doi.org/10.3390/microorganisms1010137 |
Ejemplares similares
-
A Novel Bioinformatics Method for Efficient Knowledge Discovery by BLSOM from Big Genomic Sequence Data
por: Bai, Yu, et al.
Publicado: (2014) -
Development of Self-Compressing BLSOM for Comprehensive Analysis of Big Sequence Data
por: Kikuchi, Akihito, et al.
Publicado: (2015) -
Novel bioinformatics strategies for prediction of directional sequence changes in influenza virus genomes and for surveillance of potentially hazardous strains
por: Iwasaki, Yuki, et al.
Publicado: (2013) -
Notable clustering of transcription-factor-binding motifs in human pericentric regions and its biological significance
por: Iwasaki, Yuki, et al.
Publicado: (2013) -
Unsupervised explainable AI for molecular evolutionary study of forty thousand SARS-CoV-2 genomes
por: Iwasaki, Yuki, et al.
Publicado: (2022)