Cargando…

Transcriptional regulation of tenascin‐W by TGF‐beta signaling in the bone metastatic niche of breast cancer cells

Tenascin‐W is a matricellular protein with a dynamically changing expression pattern in development and disease. In adults, tenascin‐W is mostly restricted to stem cell niches, and is also expressed in the stroma of solid cancers. Here, we analyzed its expression in the bone microenvironment of brea...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiovaro, Francesca, Martina, Enrico, Bottos, Alessia, Scherberich, Arnaud, Hynes, Nancy E., Chiquet‐Ehrismann, Ruth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029769/
https://www.ncbi.nlm.nih.gov/pubmed/25868708
http://dx.doi.org/10.1002/ijc.29565
Descripción
Sumario:Tenascin‐W is a matricellular protein with a dynamically changing expression pattern in development and disease. In adults, tenascin‐W is mostly restricted to stem cell niches, and is also expressed in the stroma of solid cancers. Here, we analyzed its expression in the bone microenvironment of breast cancer metastasis. Osteoblasts were isolated from tumor‐free or tumor‐bearing bones of mice injected with MDA‐MB231‐1833 breast cancer cells. We found a fourfold upregulation of tenascin‐W in the osteoblast population of tumor‐bearing mice compared to healthy mice, indicating that tenascin‐W is supplied by the bone metastatic niche. Transwell and co‐culture studies showed that human bone marrow stromal cells (BMSCs) express tenascin‐W protein after exposure to factors secreted by MDA‐MB231‐1833 breast cancer cells. To study tenascin‐W gene regulation, we identified and analyzed the tenascin‐W promoter as well as three evolutionary conserved regions in the first intron. 5′RACE analysis of mRNA from human breast cancer, glioblastoma and bone tissue showed a single tenascin‐W transcript with a transcription start site at a noncoding first exon followed by exon 2 containing the ATG translation start. Site‐directed mutagenesis of a SMAD4‐binding element in proximity of the TATA box strongly impaired promoter activity. TGFβ1 induced tenascin‐W expression in human BMSCs through activation of the TGFβ1 receptor ALK5, while glucocorticoids were inhibitory. Our experiments show that tenascin‐W acts as a niche component for breast cancer metastasis to bone by supporting cell migration and cell proliferation of the cancer cells.