Cargando…
Spatial-Temporal Congestion Identification Based on Time Series Similarity Considering Missing Data
Traffic congestion varies spatially and temporally. The observation of the formation, propagation and dispersion of network traffic congestion can lead to insights about the network performance, the bottleneck dynamics etc. While many researchers use the traffic flow data to reconstruct the congesti...
Autores principales: | Qi, Hongsheng, Liu, Meiqi, Wang, Dianhai, Chen, Mengwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029889/ https://www.ncbi.nlm.nih.gov/pubmed/27649412 http://dx.doi.org/10.1371/journal.pone.0162043 |
Ejemplares similares
-
Tracing Road Network Bottleneck by Data Driven Approach
por: Qi, Hongsheng, et al.
Publicado: (2016) -
Pelvic Congestion Syndrome: A Missed Opportunity
por: Kaufman, Claire, et al.
Publicado: (2021) -
Identification of temporal association rules from time-series microarray data sets
por: Nam, Hojung, et al.
Publicado: (2009) -
A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads
por: Tang, Junqing, et al.
Publicado: (2018) -
Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting
por: Huang, Lei, et al.
Publicado: (2022)