Cargando…

The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore

Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this p...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Yinchun, Ai, Zhijiu, Sun, Xu, Fu, Biwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029948/
https://www.ncbi.nlm.nih.gov/pubmed/27649535
http://dx.doi.org/10.1371/journal.pone.0162741
_version_ 1782454607196192768
author Gong, Yinchun
Ai, Zhijiu
Sun, Xu
Fu, Biwei
author_facet Gong, Yinchun
Ai, Zhijiu
Sun, Xu
Fu, Biwei
author_sort Gong, Yinchun
collection PubMed
description Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations.
format Online
Article
Text
id pubmed-5029948
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-50299482016-10-10 The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore Gong, Yinchun Ai, Zhijiu Sun, Xu Fu, Biwei PLoS One Research Article Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations. Public Library of Science 2016-09-20 /pmc/articles/PMC5029948/ /pubmed/27649535 http://dx.doi.org/10.1371/journal.pone.0162741 Text en © 2016 Gong et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Gong, Yinchun
Ai, Zhijiu
Sun, Xu
Fu, Biwei
The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore
title The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore
title_full The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore
title_fullStr The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore
title_full_unstemmed The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore
title_short The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore
title_sort effects of boundary conditions and friction on the helical buckling of coiled tubing in an inclined wellbore
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029948/
https://www.ncbi.nlm.nih.gov/pubmed/27649535
http://dx.doi.org/10.1371/journal.pone.0162741
work_keys_str_mv AT gongyinchun theeffectsofboundaryconditionsandfrictiononthehelicalbucklingofcoiledtubinginaninclinedwellbore
AT aizhijiu theeffectsofboundaryconditionsandfrictiononthehelicalbucklingofcoiledtubinginaninclinedwellbore
AT sunxu theeffectsofboundaryconditionsandfrictiononthehelicalbucklingofcoiledtubinginaninclinedwellbore
AT fubiwei theeffectsofboundaryconditionsandfrictiononthehelicalbucklingofcoiledtubinginaninclinedwellbore
AT gongyinchun effectsofboundaryconditionsandfrictiononthehelicalbucklingofcoiledtubinginaninclinedwellbore
AT aizhijiu effectsofboundaryconditionsandfrictiononthehelicalbucklingofcoiledtubinginaninclinedwellbore
AT sunxu effectsofboundaryconditionsandfrictiononthehelicalbucklingofcoiledtubinginaninclinedwellbore
AT fubiwei effectsofboundaryconditionsandfrictiononthehelicalbucklingofcoiledtubinginaninclinedwellbore