Cargando…

FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions

Guanine-nucleotide dissociation inhibitors (GDI) are negative regulators of Rho family GTPases that sequester the GTPases away from the membrane. Here we ask how GDI-Cdc42 interaction regulates localized Cdc42 activation for cell motility. The sensitivity of cells to overexpression of Rho family pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Hodgson, Louis, Spiering, Désirée, Sabouri-Ghomi, Mohsen, Dagliyan, Onur, DerMardirossian, Céline, Danuser, Gaudenz, Hahn, Klaus M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030135/
https://www.ncbi.nlm.nih.gov/pubmed/27501396
http://dx.doi.org/10.1038/nchembio.2145
Descripción
Sumario:Guanine-nucleotide dissociation inhibitors (GDI) are negative regulators of Rho family GTPases that sequester the GTPases away from the membrane. Here we ask how GDI-Cdc42 interaction regulates localized Cdc42 activation for cell motility. The sensitivity of cells to overexpression of Rho family pathway components led us to a new biosensor design (GDI.Cdc42 FLARE), in which Cdc42 was modified with a FRET ‘binding antenna’ that selectively reported Cdc42 binding to endogenous GDI. Similar antennae could also report GDI-Rac1 and GDI-RhoA interaction. Through computational multiplexing and simultaneous imaging, we determined the spatiotemporal dynamics of GDI-Cdc42 interaction and Cdc42 activation during cell protrusion and retraction. This revealed a remarkably tight coordination of GTPase release and activation on a time scale of 10 seconds, suggesting that GDI-Cdc42 interactions are a critical component in the spatiotemporal regulation of Cdc42 activity, and not merely a mechanism for global sequestration of an inactivated pool of signaling molecules.