Cargando…
Single-Cell Transcriptomics Bioinformatics and Computational Challenges
The emerging single-cell RNA-Seq (scRNA-Seq) technology holds the promise to revolutionize our understanding of diseases and associated biological processes at an unprecedented resolution. It opens the door to reveal intercellular heterogeneity and has been employed to a variety of applications, ran...
Autores principales: | Poirion, Olivier B., Zhu, Xun, Ching, Travers, Garmire, Lana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030210/ https://www.ncbi.nlm.nih.gov/pubmed/27708664 http://dx.doi.org/10.3389/fgene.2016.00163 |
Ejemplares similares
-
Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage
por: Poirion, Olivier, et al.
Publicado: (2018) -
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019) -
Using single-cell multiple omics approaches to resolve tumor heterogeneity
por: Ortega, Michael A., et al.
Publicado: (2017) -
Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
por: Zhu, Xun, et al.
Publicado: (2017) -
Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data
por: Ching, Travers, et al.
Publicado: (2018)