Cargando…
Properties of Flavonoids Isolated from the Bark of Eysenhardtia polystachya and Their Effect on Oxidative Stress in Streptozotocin-Induced Diabetes Mellitus in Mice
Six new flavonoids 2′,4′-dihydroxychalcone-6′-O-β-d-glucopyranoside (1), α,3,2′,4′-tetrahydroxy-4-methoxy-dihydrochalcone-3′-C-β-glucopyranosy-6′-O-β-d-glucopyranoside (2), 7-hydroxy-5,8′-dimethoxy-6′α-l-rhamnopyranosyl-8-(3-phenyl-trans-acryloyl)-1-benzopyran-2-one (3), 6′7-dihydroxy-5,8-dimethoxy-...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030410/ https://www.ncbi.nlm.nih.gov/pubmed/27668038 http://dx.doi.org/10.1155/2016/9156510 |
_version_ | 1782454673738825728 |
---|---|
author | Perez-Gutierrez, Rosa Martha Garcia-Campoy, Abraham Heriberto Muñiz-Ramirez, Alethia |
author_facet | Perez-Gutierrez, Rosa Martha Garcia-Campoy, Abraham Heriberto Muñiz-Ramirez, Alethia |
author_sort | Perez-Gutierrez, Rosa Martha |
collection | PubMed |
description | Six new flavonoids 2′,4′-dihydroxychalcone-6′-O-β-d-glucopyranoside (1), α,3,2′,4′-tetrahydroxy-4-methoxy-dihydrochalcone-3′-C-β-glucopyranosy-6′-O-β-d-glucopyranoside (2), 7-hydroxy-5,8′-dimethoxy-6′α-l-rhamnopyranosyl-8-(3-phenyl-trans-acryloyl)-1-benzopyran-2-one (3), 6′7-dihydroxy-5,8-dimethoxy-8(3-phenyl-trans-acryloyl)-1-benzopyran-2-one (4), 9-hydroxy-3,8-dimethoxy-4-prenylpterocarpan (5), and α,4,4′-trihydroxydihydrochalcone-2′-O-β-d-glucopyranoside (6) were isolated from bark of Eysenhardtia polystachya. Antidiabetic activity of compounds 1–5 in terms of their cellular antioxidant and free radical scavenging and also in streptozotocin- (STZ-) induced diabetic mice was evaluated on liver transaminases, lipid peroxidation, total bilirubin, total protein, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (CSH-Px), and glutathione reductase (GSH). Results indicated that 1–5 scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl ((∙)OH), nitric oxide radicals (NO(∙)), superoxide anion radical (O(2) (∙−)), radical cation (ABTS(∙+)), and hydrogen peroxide (H(2)O(2)) radical, and protection against H(2)O(2) induced BSA damage was also observed. Furthermore, 1–5 showed ability to decrease the oxidative stress in H9c2 cell. Diabetic mice present high levels of lipid peroxide, total protein, SGPT, SGOT, ALP, and TB. However, treatment of STZ-induced diabetes in mice with 1–5 reduced levels of these enzymes leading to protector effect of liver. In addition, with treatment with 1–5, increases in radical scavenging enzymes of CSH-Px, SOD, GSH, and CAT have also been observed in diabetic mice. The antioxidant properties of compounds 1–5 are a promising strategy for ameliorating therapeutic effects by avoiding disorders in the normal redox reactions in healthy cells which consequently could alleviate complications of diabetes. |
format | Online Article Text |
id | pubmed-5030410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-50304102016-09-25 Properties of Flavonoids Isolated from the Bark of Eysenhardtia polystachya and Their Effect on Oxidative Stress in Streptozotocin-Induced Diabetes Mellitus in Mice Perez-Gutierrez, Rosa Martha Garcia-Campoy, Abraham Heriberto Muñiz-Ramirez, Alethia Oxid Med Cell Longev Research Article Six new flavonoids 2′,4′-dihydroxychalcone-6′-O-β-d-glucopyranoside (1), α,3,2′,4′-tetrahydroxy-4-methoxy-dihydrochalcone-3′-C-β-glucopyranosy-6′-O-β-d-glucopyranoside (2), 7-hydroxy-5,8′-dimethoxy-6′α-l-rhamnopyranosyl-8-(3-phenyl-trans-acryloyl)-1-benzopyran-2-one (3), 6′7-dihydroxy-5,8-dimethoxy-8(3-phenyl-trans-acryloyl)-1-benzopyran-2-one (4), 9-hydroxy-3,8-dimethoxy-4-prenylpterocarpan (5), and α,4,4′-trihydroxydihydrochalcone-2′-O-β-d-glucopyranoside (6) were isolated from bark of Eysenhardtia polystachya. Antidiabetic activity of compounds 1–5 in terms of their cellular antioxidant and free radical scavenging and also in streptozotocin- (STZ-) induced diabetic mice was evaluated on liver transaminases, lipid peroxidation, total bilirubin, total protein, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (CSH-Px), and glutathione reductase (GSH). Results indicated that 1–5 scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl ((∙)OH), nitric oxide radicals (NO(∙)), superoxide anion radical (O(2) (∙−)), radical cation (ABTS(∙+)), and hydrogen peroxide (H(2)O(2)) radical, and protection against H(2)O(2) induced BSA damage was also observed. Furthermore, 1–5 showed ability to decrease the oxidative stress in H9c2 cell. Diabetic mice present high levels of lipid peroxide, total protein, SGPT, SGOT, ALP, and TB. However, treatment of STZ-induced diabetes in mice with 1–5 reduced levels of these enzymes leading to protector effect of liver. In addition, with treatment with 1–5, increases in radical scavenging enzymes of CSH-Px, SOD, GSH, and CAT have also been observed in diabetic mice. The antioxidant properties of compounds 1–5 are a promising strategy for ameliorating therapeutic effects by avoiding disorders in the normal redox reactions in healthy cells which consequently could alleviate complications of diabetes. Hindawi Publishing Corporation 2016 2016-09-07 /pmc/articles/PMC5030410/ /pubmed/27668038 http://dx.doi.org/10.1155/2016/9156510 Text en Copyright © 2016 Rosa Martha Perez-Gutierrez et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Perez-Gutierrez, Rosa Martha Garcia-Campoy, Abraham Heriberto Muñiz-Ramirez, Alethia Properties of Flavonoids Isolated from the Bark of Eysenhardtia polystachya and Their Effect on Oxidative Stress in Streptozotocin-Induced Diabetes Mellitus in Mice |
title | Properties of Flavonoids Isolated from the Bark of Eysenhardtia polystachya and Their Effect on Oxidative Stress in Streptozotocin-Induced Diabetes Mellitus in Mice |
title_full | Properties of Flavonoids Isolated from the Bark of Eysenhardtia polystachya and Their Effect on Oxidative Stress in Streptozotocin-Induced Diabetes Mellitus in Mice |
title_fullStr | Properties of Flavonoids Isolated from the Bark of Eysenhardtia polystachya and Their Effect on Oxidative Stress in Streptozotocin-Induced Diabetes Mellitus in Mice |
title_full_unstemmed | Properties of Flavonoids Isolated from the Bark of Eysenhardtia polystachya and Their Effect on Oxidative Stress in Streptozotocin-Induced Diabetes Mellitus in Mice |
title_short | Properties of Flavonoids Isolated from the Bark of Eysenhardtia polystachya and Their Effect on Oxidative Stress in Streptozotocin-Induced Diabetes Mellitus in Mice |
title_sort | properties of flavonoids isolated from the bark of eysenhardtia polystachya and their effect on oxidative stress in streptozotocin-induced diabetes mellitus in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030410/ https://www.ncbi.nlm.nih.gov/pubmed/27668038 http://dx.doi.org/10.1155/2016/9156510 |
work_keys_str_mv | AT perezgutierrezrosamartha propertiesofflavonoidsisolatedfromthebarkofeysenhardtiapolystachyaandtheireffectonoxidativestressinstreptozotocininduceddiabetesmellitusinmice AT garciacampoyabrahamheriberto propertiesofflavonoidsisolatedfromthebarkofeysenhardtiapolystachyaandtheireffectonoxidativestressinstreptozotocininduceddiabetesmellitusinmice AT munizramirezalethia propertiesofflavonoidsisolatedfromthebarkofeysenhardtiapolystachyaandtheireffectonoxidativestressinstreptozotocininduceddiabetesmellitusinmice |