Cargando…
Identifying Significant Features in Cancer Methylation Data Using Gene Pathway Segmentation
In order to provide the most effective therapy for cancer, it is important to be able to diagnose whether a patient’s cancer will respond to a proposed treatment. Methylation profiling could contain information from which such predictions could be made. Currently, hypothesis testing is used to deter...
Autores principales: | Hira, Zena M., Gillies, Duncan F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030825/ https://www.ncbi.nlm.nih.gov/pubmed/27688706 http://dx.doi.org/10.4137/CIN.S39859 |
Ejemplares similares
-
An Algorithm for Finding Biologically Significant Features in Microarray Data Based on A Priori Manifold Learning
por: Hira, Zena M., et al.
Publicado: (2014) -
A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data
por: Hira, Zena M., et al.
Publicado: (2015) -
MethylToSNP: identifying SNPs in Illumina DNA methylation array data
por: LaBarre, Brenna A., et al.
Publicado: (2019) -
Mining pathway associations for disease-related pathway activity analysis based on gene expression and methylation data
por: Lee, Hyeonjeong, et al.
Publicado: (2017) -
Multi-view feature selection for identifying gene markers: a diversified biological data driven approach
por: Acharya, Sudipta, et al.
Publicado: (2020)