Cargando…

Size dependent classification of heat shock proteins: a mini-review

Molecular chaperones are ubiquitous and abundant within cellular environments, functioning as a defense mechanism against outer environment. The range of molecular chaperones varies from 10 to over 100 kDa. Depending on the size, the specific locations and physiological roles of molecular chaperones...

Descripción completa

Detalles Bibliográficos
Autor principal: Jee, Hyunseok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Exercise Rehabilitation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031383/
https://www.ncbi.nlm.nih.gov/pubmed/27656620
http://dx.doi.org/10.12965/jer.1632642.321
Descripción
Sumario:Molecular chaperones are ubiquitous and abundant within cellular environments, functioning as a defense mechanism against outer environment. The range of molecular chaperones varies from 10 to over 100 kDa. Depending on the size, the specific locations and physiological roles of molecular chaperones vary within the cell. Multifunctionality of heat shock proteins (HSPs) expressed via various cyto-stress including heat shock have been spotlighted as a reliable prognostic target biomarker for therapeutic purpose in neuromuscular disease or cancer related studies. HSP also plays a critical role in the maintenance of proteins and cellular homeostasis in exercise-induced adaptation. Such various functions of HSPs give scientists insights into intracellular protective mechanisms in the living body thus HSPs can be target molecules to know the defense mechanism in cellular environment. Based on experimental results regarding small to large scaled HSPs, this review aims to provide updated important information regarding the modality of responses of intracellular HSPs towards extracellular stimulations. Further, the expressive mechanisms of HSPs data from tremendous in vivo and in vitro studies underlying the enhancement of the functionality of living body will be discussed.