Cargando…

DNA Microarray Platform for Detection and Surveillance of Viruses Transmitted by Small Mammals and Arthropods

Viruses transmitted by small mammals and arthropods serve as global threats to humans. Most emergent and re-emergent viral agents are transmitted by these groups; therefore, the development of high-throughput screening methods for the detection and surveillance of such viruses is of great interest....

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Mohd Jaseem, Trabuco, Amanda Cristina, Alfonso, Helda Liz, Figueiredo, Mario Luis, Batista, Weber Cheli, Badra, Soraya Jabur, Figueiredo, Luiz Tadeu, Lavrador, Marco Aurélio, Aquino, Victor Hugo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031435/
https://www.ncbi.nlm.nih.gov/pubmed/27654806
http://dx.doi.org/10.1371/journal.pntd.0005017
Descripción
Sumario:Viruses transmitted by small mammals and arthropods serve as global threats to humans. Most emergent and re-emergent viral agents are transmitted by these groups; therefore, the development of high-throughput screening methods for the detection and surveillance of such viruses is of great interest. In this study, we describe a DNA microarray platform that can be used for screening all viruses transmitted by small mammals and arthropods (SMAvirusChip) with nucleotide sequences that have been deposited in the GenBank. SMAvirusChip was designed with more than 15,000 oligonucleotide probes (60-mers), including viral and control probes. Two SMAvirusChip versions were designed: SMAvirusChip v1 contains 4209 viral probes for the detection of 409 viruses, while SMAvirusChip v2 contains 4943 probes for the detection of 416 viruses. SMAvirusChip was evaluated with 20 laboratory reference-strain viruses. These viruses could be specifically detected when alone in a sample or when artificially mixed within a single sample. The sensitivity of SMAvirusChip was evaluated using 10-fold serial dilutions of dengue virus (DENV). The results showed a detection limit as low as 2.6E3 RNA copies/mL. Additionally, the sensitivity was one log(10) lower (2.6E2 RNA copies/mL) than quantitative real-time RT-PCR and sufficient to detect viral genomes in clinical samples. The detection of DENV in serum samples of DENV-infected patients (n = 6) and in a whole blood sample spiked with DENV confirmed the applicability of SMAvirusChip for the detection of viruses in clinical samples. In addition, in a pool of mosquito samples spiked with DENV, the virus was also detectable. SMAvirusChip was able to specifically detect viruses in cell cultures, serum samples, total blood samples and a pool of mosquitoes, confirming that cellular RNA/DNA did not interfere with the assay. Therefore, SMAvirusChip may represent an innovative surveillance method for the rapid identification of viruses transmitted by small mammals and arthropods.