Cargando…
Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes
This paper considers novel Bayesian non-parametric methods for stochastic epidemic models. Many standard modeling and data analysis methods use underlying assumptions (e.g. concerning the rate at which new cases of disease will occur) which are rarely challenged or tested in practice. To relax these...
Autores principales: | Xu, Xiaoguang, Kypraios, Theodore, O'Neill, Philip D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031942/ https://www.ncbi.nlm.nih.gov/pubmed/26993062 http://dx.doi.org/10.1093/biostatistics/kxw011 |
Ejemplares similares
-
Pair-based likelihood approximations for stochastic epidemic models
por: Stockdale, Jessica E, et al.
Publicado: (2019) -
Bayesian nonparametric inference for heterogeneously mixing infectious disease models
por: Seymour, Rowland G., et al.
Publicado: (2022) -
Modelling, Bayesian inference, and model assessment for nosocomial pathogens using whole‐genome‐sequence data
por: Cassidy, Rosanna, et al.
Publicado: (2020) -
Bayesian inference for stochastic processes
por: Broemeling, Lyle D
Publicado: (2017) -
Non-parametric synergy modeling of chemical compounds with Gaussian processes
por: Shapovalova, Yuliya, et al.
Publicado: (2022)