Cargando…
Efficient CRISPR/Cas9-Mediated Versatile, Predictable, and Donor-Free Gene Knockout in Human Pluripotent Stem Cells
Loss-of-function studies in human pluripotent stem cells (hPSCs) require efficient methodologies for lesion of genes of interest. Here, we introduce a donor-free paired gRNA-guided CRISPR/Cas9 knockout strategy (paired-KO) for efficient and rapid gene ablation in hPSCs. Through paired-KO, we succeed...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5032288/ https://www.ncbi.nlm.nih.gov/pubmed/27594587 http://dx.doi.org/10.1016/j.stemcr.2016.07.021 |
Sumario: | Loss-of-function studies in human pluripotent stem cells (hPSCs) require efficient methodologies for lesion of genes of interest. Here, we introduce a donor-free paired gRNA-guided CRISPR/Cas9 knockout strategy (paired-KO) for efficient and rapid gene ablation in hPSCs. Through paired-KO, we succeeded in targeting all genes of interest with high biallelic targeting efficiencies. More importantly, during paired-KO, the cleaved DNA was repaired mostly through direct end joining without insertions/deletions (precise ligation), and thus makes the lesion product predictable. The paired-KO remained highly efficient for one-step targeting of multiple genes and was also efficient for targeting of microRNA, while for long non-coding RNA over 8 kb, cleavage of a short fragment of the core promoter region was sufficient to eradicate downstream gene transcription. This work suggests that the paired-KO strategy is a simple and robust system for loss-of-function studies for both coding and non-coding genes in hPSCs. |
---|