Cargando…
Using Deep Learning for Image-Based Plant Disease Detection
Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. The combination of increasing global smartphone penetration and recent advances in computer vision made possible by deep lea...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5032846/ https://www.ncbi.nlm.nih.gov/pubmed/27713752 http://dx.doi.org/10.3389/fpls.2016.01419 |
_version_ | 1782455073991819264 |
---|---|
author | Mohanty, Sharada P. Hughes, David P. Salathé, Marcel |
author_facet | Mohanty, Sharada P. Hughes, David P. Salathé, Marcel |
author_sort | Mohanty, Sharada P. |
collection | PubMed |
description | Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. The combination of increasing global smartphone penetration and recent advances in computer vision made possible by deep learning has paved the way for smartphone-assisted disease diagnosis. Using a public dataset of 54,306 images of diseased and healthy plant leaves collected under controlled conditions, we train a deep convolutional neural network to identify 14 crop species and 26 diseases (or absence thereof). The trained model achieves an accuracy of 99.35% on a held-out test set, demonstrating the feasibility of this approach. Overall, the approach of training deep learning models on increasingly large and publicly available image datasets presents a clear path toward smartphone-assisted crop disease diagnosis on a massive global scale. |
format | Online Article Text |
id | pubmed-5032846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50328462016-10-06 Using Deep Learning for Image-Based Plant Disease Detection Mohanty, Sharada P. Hughes, David P. Salathé, Marcel Front Plant Sci Plant Science Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. The combination of increasing global smartphone penetration and recent advances in computer vision made possible by deep learning has paved the way for smartphone-assisted disease diagnosis. Using a public dataset of 54,306 images of diseased and healthy plant leaves collected under controlled conditions, we train a deep convolutional neural network to identify 14 crop species and 26 diseases (or absence thereof). The trained model achieves an accuracy of 99.35% on a held-out test set, demonstrating the feasibility of this approach. Overall, the approach of training deep learning models on increasingly large and publicly available image datasets presents a clear path toward smartphone-assisted crop disease diagnosis on a massive global scale. Frontiers Media S.A. 2016-09-22 /pmc/articles/PMC5032846/ /pubmed/27713752 http://dx.doi.org/10.3389/fpls.2016.01419 Text en Copyright © 2016 Mohanty, Hughes and Salathé. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Mohanty, Sharada P. Hughes, David P. Salathé, Marcel Using Deep Learning for Image-Based Plant Disease Detection |
title | Using Deep Learning for Image-Based Plant Disease Detection |
title_full | Using Deep Learning for Image-Based Plant Disease Detection |
title_fullStr | Using Deep Learning for Image-Based Plant Disease Detection |
title_full_unstemmed | Using Deep Learning for Image-Based Plant Disease Detection |
title_short | Using Deep Learning for Image-Based Plant Disease Detection |
title_sort | using deep learning for image-based plant disease detection |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5032846/ https://www.ncbi.nlm.nih.gov/pubmed/27713752 http://dx.doi.org/10.3389/fpls.2016.01419 |
work_keys_str_mv | AT mohantysharadap usingdeeplearningforimagebasedplantdiseasedetection AT hughesdavidp usingdeeplearningforimagebasedplantdiseasedetection AT salathemarcel usingdeeplearningforimagebasedplantdiseasedetection |