Cargando…
Righting Reflex Predicts Long-Term Histological and Behavioral Outcomes in a Closed Head Model of Traumatic Brain Injury
Blunt impact produces a heterogeneous brain injury in people and in animal models of traumatic brain injury. We report that a single closed head impact to adult C57/BL6 mice produced two injury syndromes (CHI-1 and CHI-2). CHI-1 mice spontaneously reinitiated breathing after injury while CHI-2 mice...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033343/ https://www.ncbi.nlm.nih.gov/pubmed/27657499 http://dx.doi.org/10.1371/journal.pone.0161053 |
Sumario: | Blunt impact produces a heterogeneous brain injury in people and in animal models of traumatic brain injury. We report that a single closed head impact to adult C57/BL6 mice produced two injury syndromes (CHI-1 and CHI-2). CHI-1 mice spontaneously reinitiated breathing after injury while CHI-2 mice had prolonged apnea and regained breathing only after cardiopulmonary resuscitation and supplementation of 100% O(2). The CHI-1 group significantly regained righting reflex more rapidly than the CHI-2 group. At 7 days post-injury, CHI-1, but not CHI-2 mice, acquired but had no long-term retention of an active place avoidance task. The behavioral deficits of CHI-1 and CHI-2 mice were retained one-month after the injury. CHI-1 mice had loss of hippocampal neurons and localized white matter injury at one month after injury. CHI-2 had a larger loss of hippocampal neurons and more widespread loss of myelin and axons. High-speed videos made during the injury were followed by assessment of breathing and righting reflex. These videos show that CHI-2 mice experienced a larger vertical g-force than CHI-1 mice. Time to regain righting reflex in CHI-2 mice significantly correlated with vertical g-force. Thus, physiological responses occurring immediately after injury can be valuable surrogate markers of subsequent behavioral and histological deficits. |
---|