Cargando…

G Protein-Coupled Receptor 43 Modulates Neutrophil Recruitment during Acute Inflammation

Fermentation of dietary fibre in the gut yields large amounts of short chain fatty acids (SCFAs). SCFAs can impart biological responses in cells through their engagement of ‘metabolite-sensing’ G protein-coupled receptors (GPCRs). One of the main SCFA receptors, GPR43, is highly expressed by neutrop...

Descripción completa

Detalles Bibliográficos
Autores principales: Kamp, Marjon E., Shim, Raymond, Nicholls, Alyce J., Oliveira, Ana Carolina, Mason, Linda J., Binge, Lauren, Mackay, Charles R., Wong, Connie H. Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033414/
https://www.ncbi.nlm.nih.gov/pubmed/27658303
http://dx.doi.org/10.1371/journal.pone.0163750
Descripción
Sumario:Fermentation of dietary fibre in the gut yields large amounts of short chain fatty acids (SCFAs). SCFAs can impart biological responses in cells through their engagement of ‘metabolite-sensing’ G protein-coupled receptors (GPCRs). One of the main SCFA receptors, GPR43, is highly expressed by neutrophils, which suggests that the actions of GPR43 and dietary fibre intake may affect neutrophil recruitment during inflammatory responses in vivo. Using intravital imaging of the small intestine, we found greater intravascular neutrophil rolling and adhesion in Gpr43(−/−)mice in response to LPS at 1 h. After 4 h of LPS challenge, the intravascular rolling velocity of GPR43-deficient neutrophils was reduced significantly and increased numbers of neutrophils were found in the lamina propria of Gpr43(−/−)mice. Additionally, GPR43-deficient leukocytes demonstrated exacerbated migration into the peritoneal cavity following fMLP challenge. The fMLP-induced neutrophil migration was significantly suppressed in wildtype mice that were treated with acetate, but not in Gpr43(−/−)mice, strongly suggesting a role for SCFAs in modulating neutrophil migration via GPR43. Indeed, neutrophils of no fibre-fed wildtype mice exhibited elevated migratory behaviour compared to normal chow-fed wildtype mice. Interestingly, this elevated migration could also be reproduced through simple transfer of a no fibre microbiota into germ-free mice, suggesting that the composition and function of microbiota stemming from a no fibre diet mediated the changes in neutrophil migration. Therefore, GPR43 and a microbiota composition that allows for SCFA production function to modulate neutrophil recruitment during inflammatory responses.