Cargando…
Antibacterial activity of a modified unfilled resin containing a novel polymerizable quaternary ammonium salt MAE-HB
Resins with strong and long-lasting antibacterial properties are critical for the prevention of secondary dental caries. In this study, we evaluated the antibacterial effect and the underlying mechanism of action of an unfilled resin incorporating 2-methacryloxylethyl hexadecyl methyl ammonium bromi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034341/ https://www.ncbi.nlm.nih.gov/pubmed/27659279 http://dx.doi.org/10.1038/srep33858 |
Sumario: | Resins with strong and long-lasting antibacterial properties are critical for the prevention of secondary dental caries. In this study, we evaluated the antibacterial effect and the underlying mechanism of action of an unfilled resin incorporating 2-methacryloxylethyl hexadecyl methyl ammonium bromide (MAE-HB) against Streptococcus mutans UA159 (S. mutans UA159). MAE-HB was added into unfilled resin at 10 mass%, and unfilled resin without MAE-HB served as the control. Bacterial growth was inhibited on 10%-MAE-HB unfilled resin compared with the control at 1 d, 7 d, 30 d, or 180 d (P < 0.05). The growth inhibitory effect was independent of the incubation time (P > 0.05). No significant differences in the antibacterial activities of eluents from control versus 10%-MAE-HB unfilled resins were observed at any time point (P > 0.05). The number of bacteria attached to 10%-MAE-HB unfilled resin was considerably lower than that to control. Fe-SEM and CLSM showed that 10%-MAE-HB unfilled resin disturbed the integrity of bacterial cells. Expression of the bacterial glucosyltransferases, gtfB and gtfC, was lower on 10%-MAE-HB unfilled resin compared to that on control (P < 0.05). These data indicate that incorporation of MAE-HB confers unfilled resin with strong and long-lasting antibacterial effects against S. mutans. |
---|