Cargando…
Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL
BACKGROUND: GATA3 is pivotal for the development of T lymphocytes. While its effects in later stages of T cell differentiation are well recognized, the role of GATA3 in the generation of early T cell precursors (ETP) has only recently been explored. As aberrant GATA3 mRNA expression has been linked...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034449/ https://www.ncbi.nlm.nih.gov/pubmed/27658391 http://dx.doi.org/10.1186/s13045-016-0324-8 |
_version_ | 1782455270943752192 |
---|---|
author | Fransecky, L. Neumann, M. Heesch, S. Schlee, C. Ortiz-Tanchez, J. Heller, S. Mossner, M. Schwartz, S. Mochmann, L. H. Isaakidis, K. Bastian, L. Kees, U. R. Herold, T. Spiekermann, K. Gökbuget, N. Baldus, C. D. |
author_facet | Fransecky, L. Neumann, M. Heesch, S. Schlee, C. Ortiz-Tanchez, J. Heller, S. Mossner, M. Schwartz, S. Mochmann, L. H. Isaakidis, K. Bastian, L. Kees, U. R. Herold, T. Spiekermann, K. Gökbuget, N. Baldus, C. D. |
author_sort | Fransecky, L. |
collection | PubMed |
description | BACKGROUND: GATA3 is pivotal for the development of T lymphocytes. While its effects in later stages of T cell differentiation are well recognized, the role of GATA3 in the generation of early T cell precursors (ETP) has only recently been explored. As aberrant GATA3 mRNA expression has been linked to cancerogenesis, we investigated the role of GATA3 in early T cell precursor acute lymphoblastic leukemia (ETP-ALL). METHODS: We analyzed GATA3 mRNA expression by RT-PCR (n = 182) in adult patients with T-ALL. Of these, we identified 70 of 182 patients with ETP-ALL by immunophenotyping. DNA methylation was assessed genome wide (Illumina Infinium® HumanMethylation450 BeadChip platform) in 12 patients and GATA3-specifically by pyrosequencing in 70 patients with ETP-ALL. The mutational landscape of ETP-ALL with respect to GATA3 expression was investigated in 18 patients and validated by Sanger sequencing in 65 patients with ETP-ALL. Gene expression profiles (Affymetrix Human genome U133 Plus 2.0) of an independent cohort of adult T-ALL (n = 83) were used to identify ETP-ALL and investigate GATA3(low) and GATA3(high) expressing T-ALL patients. In addition, the ETP-ALL cell line PER-117 was investigated for cytotoxicity, apoptosis, GATA3 mRNA expression, DNA methylation, and global gene expression before and after treatment with decitabine. RESULTS: In our cohort of 70 ETP-ALL patients, 33 % (23/70) lacked GATA3 expression and were thus defined as GATA3(low). DNA methylation analysis revealed a high degree of GATA3 CpG island methylation in GATA3(low) compared with GATA3(high) ETP-ALL patients (mean 46 vs. 21 %, p < 0.0001). Genome-wide expression profiling of GATA3(low) ETP-ALL exhibited enrichment of myeloid/lymphoid progenitor (MLP) and granulocyte/monocyte progenitor (GMP) genes, while T cell-specific signatures were downregulated compared to GATA3(high) ETP-ALL. Among others, FLT3 expression was upregulated and mutational analyses demonstrated a high rate (79 %) of FLT3 mutations. Hypomethylating agents induced reversal of GATA3 silencing, and gene expression profiling revealed downregulation of hematopoietic stem cell genes and upregulation of T cell differentiation. CONCLUSIONS: We propose GATA3(low) ETP-ALL as a novel stem cell-like leukemia with implications for the use of myeloid-derived therapies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13045-016-0324-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5034449 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-50344492016-09-29 Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL Fransecky, L. Neumann, M. Heesch, S. Schlee, C. Ortiz-Tanchez, J. Heller, S. Mossner, M. Schwartz, S. Mochmann, L. H. Isaakidis, K. Bastian, L. Kees, U. R. Herold, T. Spiekermann, K. Gökbuget, N. Baldus, C. D. J Hematol Oncol Research BACKGROUND: GATA3 is pivotal for the development of T lymphocytes. While its effects in later stages of T cell differentiation are well recognized, the role of GATA3 in the generation of early T cell precursors (ETP) has only recently been explored. As aberrant GATA3 mRNA expression has been linked to cancerogenesis, we investigated the role of GATA3 in early T cell precursor acute lymphoblastic leukemia (ETP-ALL). METHODS: We analyzed GATA3 mRNA expression by RT-PCR (n = 182) in adult patients with T-ALL. Of these, we identified 70 of 182 patients with ETP-ALL by immunophenotyping. DNA methylation was assessed genome wide (Illumina Infinium® HumanMethylation450 BeadChip platform) in 12 patients and GATA3-specifically by pyrosequencing in 70 patients with ETP-ALL. The mutational landscape of ETP-ALL with respect to GATA3 expression was investigated in 18 patients and validated by Sanger sequencing in 65 patients with ETP-ALL. Gene expression profiles (Affymetrix Human genome U133 Plus 2.0) of an independent cohort of adult T-ALL (n = 83) were used to identify ETP-ALL and investigate GATA3(low) and GATA3(high) expressing T-ALL patients. In addition, the ETP-ALL cell line PER-117 was investigated for cytotoxicity, apoptosis, GATA3 mRNA expression, DNA methylation, and global gene expression before and after treatment with decitabine. RESULTS: In our cohort of 70 ETP-ALL patients, 33 % (23/70) lacked GATA3 expression and were thus defined as GATA3(low). DNA methylation analysis revealed a high degree of GATA3 CpG island methylation in GATA3(low) compared with GATA3(high) ETP-ALL patients (mean 46 vs. 21 %, p < 0.0001). Genome-wide expression profiling of GATA3(low) ETP-ALL exhibited enrichment of myeloid/lymphoid progenitor (MLP) and granulocyte/monocyte progenitor (GMP) genes, while T cell-specific signatures were downregulated compared to GATA3(high) ETP-ALL. Among others, FLT3 expression was upregulated and mutational analyses demonstrated a high rate (79 %) of FLT3 mutations. Hypomethylating agents induced reversal of GATA3 silencing, and gene expression profiling revealed downregulation of hematopoietic stem cell genes and upregulation of T cell differentiation. CONCLUSIONS: We propose GATA3(low) ETP-ALL as a novel stem cell-like leukemia with implications for the use of myeloid-derived therapies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13045-016-0324-8) contains supplementary material, which is available to authorized users. BioMed Central 2016-09-22 /pmc/articles/PMC5034449/ /pubmed/27658391 http://dx.doi.org/10.1186/s13045-016-0324-8 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Fransecky, L. Neumann, M. Heesch, S. Schlee, C. Ortiz-Tanchez, J. Heller, S. Mossner, M. Schwartz, S. Mochmann, L. H. Isaakidis, K. Bastian, L. Kees, U. R. Herold, T. Spiekermann, K. Gökbuget, N. Baldus, C. D. Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL |
title | Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL |
title_full | Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL |
title_fullStr | Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL |
title_full_unstemmed | Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL |
title_short | Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL |
title_sort | silencing of gata3 defines a novel stem cell-like subgroup of etp-all |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034449/ https://www.ncbi.nlm.nih.gov/pubmed/27658391 http://dx.doi.org/10.1186/s13045-016-0324-8 |
work_keys_str_mv | AT franseckyl silencingofgata3definesanovelstemcelllikesubgroupofetpall AT neumannm silencingofgata3definesanovelstemcelllikesubgroupofetpall AT heeschs silencingofgata3definesanovelstemcelllikesubgroupofetpall AT schleec silencingofgata3definesanovelstemcelllikesubgroupofetpall AT ortiztanchezj silencingofgata3definesanovelstemcelllikesubgroupofetpall AT hellers silencingofgata3definesanovelstemcelllikesubgroupofetpall AT mossnerm silencingofgata3definesanovelstemcelllikesubgroupofetpall AT schwartzs silencingofgata3definesanovelstemcelllikesubgroupofetpall AT mochmannlh silencingofgata3definesanovelstemcelllikesubgroupofetpall AT isaakidisk silencingofgata3definesanovelstemcelllikesubgroupofetpall AT bastianl silencingofgata3definesanovelstemcelllikesubgroupofetpall AT keesur silencingofgata3definesanovelstemcelllikesubgroupofetpall AT heroldt silencingofgata3definesanovelstemcelllikesubgroupofetpall AT spiekermannk silencingofgata3definesanovelstemcelllikesubgroupofetpall AT gokbugetn silencingofgata3definesanovelstemcelllikesubgroupofetpall AT balduscd silencingofgata3definesanovelstemcelllikesubgroupofetpall |