Cargando…

Classification and Regression Tree (CART) analysis to predict influenza in primary care patients

BACKGROUND: The use of neuraminidase-inhibiting anti-viral medication to treat influenza is relatively infrequent. Rapid, cost-effective methods for diagnosing influenza are needed to enable appropriate prescribing. Multi-viral respiratory panels using reverse transcription polymerase chain reaction...

Descripción completa

Detalles Bibliográficos
Autores principales: Zimmerman, Richard K., Balasubramani, G. K., Nowalk, Mary Patricia, Eng, Heather, Urbanski, Leonard, Jackson, Michael L., Jackson, Lisa A., McLean, Huong Q., Belongia, Edward A., Monto, Arnold S., Malosh, Ryan E., Gaglani, Manjusha, Clipper, Lydia, Flannery, Brendan, Wisniewski, Stephen R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034457/
https://www.ncbi.nlm.nih.gov/pubmed/27659721
http://dx.doi.org/10.1186/s12879-016-1839-x
_version_ 1782455272534441984
author Zimmerman, Richard K.
Balasubramani, G. K.
Nowalk, Mary Patricia
Eng, Heather
Urbanski, Leonard
Jackson, Michael L.
Jackson, Lisa A.
McLean, Huong Q.
Belongia, Edward A.
Monto, Arnold S.
Malosh, Ryan E.
Gaglani, Manjusha
Clipper, Lydia
Flannery, Brendan
Wisniewski, Stephen R.
author_facet Zimmerman, Richard K.
Balasubramani, G. K.
Nowalk, Mary Patricia
Eng, Heather
Urbanski, Leonard
Jackson, Michael L.
Jackson, Lisa A.
McLean, Huong Q.
Belongia, Edward A.
Monto, Arnold S.
Malosh, Ryan E.
Gaglani, Manjusha
Clipper, Lydia
Flannery, Brendan
Wisniewski, Stephen R.
author_sort Zimmerman, Richard K.
collection PubMed
description BACKGROUND: The use of neuraminidase-inhibiting anti-viral medication to treat influenza is relatively infrequent. Rapid, cost-effective methods for diagnosing influenza are needed to enable appropriate prescribing. Multi-viral respiratory panels using reverse transcription polymerase chain reaction (PCR) assays to diagnose influenza are accurate but expensive and more time-consuming than low sensitivity rapid influenza tests. Influenza clinical decision algorithms are both rapid and inexpensive, but most are based on regression analyses that do not account for higher order interactions. This study used classification and regression trees (CART) modeling to estimate probabilities of influenza. METHODS: Eligible enrollees ≥ 5 years old (n = 4,173) who presented at ambulatory centers for treatment of acute respiratory illness (≤7 days) with cough or fever in 2011–2012, provided nasal and pharyngeal swabs for PCR testing for influenza, information on demographics, symptoms, personal characteristics and self-reported influenza vaccination status. RESULTS: Antiviral medication was prescribed for just 15 % of those with PCR-confirmed influenza. An algorithm that included fever, cough, and fatigue had sensitivity of 84 %, specificity of 48 %, positive predictive value (PPV) of 23 % and negative predictive value (NPV) of 94 % for the development sample. CONCLUSIONS: The CART algorithm has good sensitivity and high NPV, but low PPV for identifying influenza among outpatients ≥5 years. Thus, it is good at identifying a group who do not need testing or antivirals and had fair to good predictive performance for influenza. Further testing of the algorithm in other influenza seasons would help to optimize decisions for lab testing or treatment.
format Online
Article
Text
id pubmed-5034457
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-50344572016-09-29 Classification and Regression Tree (CART) analysis to predict influenza in primary care patients Zimmerman, Richard K. Balasubramani, G. K. Nowalk, Mary Patricia Eng, Heather Urbanski, Leonard Jackson, Michael L. Jackson, Lisa A. McLean, Huong Q. Belongia, Edward A. Monto, Arnold S. Malosh, Ryan E. Gaglani, Manjusha Clipper, Lydia Flannery, Brendan Wisniewski, Stephen R. BMC Infect Dis Research Article BACKGROUND: The use of neuraminidase-inhibiting anti-viral medication to treat influenza is relatively infrequent. Rapid, cost-effective methods for diagnosing influenza are needed to enable appropriate prescribing. Multi-viral respiratory panels using reverse transcription polymerase chain reaction (PCR) assays to diagnose influenza are accurate but expensive and more time-consuming than low sensitivity rapid influenza tests. Influenza clinical decision algorithms are both rapid and inexpensive, but most are based on regression analyses that do not account for higher order interactions. This study used classification and regression trees (CART) modeling to estimate probabilities of influenza. METHODS: Eligible enrollees ≥ 5 years old (n = 4,173) who presented at ambulatory centers for treatment of acute respiratory illness (≤7 days) with cough or fever in 2011–2012, provided nasal and pharyngeal swabs for PCR testing for influenza, information on demographics, symptoms, personal characteristics and self-reported influenza vaccination status. RESULTS: Antiviral medication was prescribed for just 15 % of those with PCR-confirmed influenza. An algorithm that included fever, cough, and fatigue had sensitivity of 84 %, specificity of 48 %, positive predictive value (PPV) of 23 % and negative predictive value (NPV) of 94 % for the development sample. CONCLUSIONS: The CART algorithm has good sensitivity and high NPV, but low PPV for identifying influenza among outpatients ≥5 years. Thus, it is good at identifying a group who do not need testing or antivirals and had fair to good predictive performance for influenza. Further testing of the algorithm in other influenza seasons would help to optimize decisions for lab testing or treatment. BioMed Central 2016-09-22 /pmc/articles/PMC5034457/ /pubmed/27659721 http://dx.doi.org/10.1186/s12879-016-1839-x Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Zimmerman, Richard K.
Balasubramani, G. K.
Nowalk, Mary Patricia
Eng, Heather
Urbanski, Leonard
Jackson, Michael L.
Jackson, Lisa A.
McLean, Huong Q.
Belongia, Edward A.
Monto, Arnold S.
Malosh, Ryan E.
Gaglani, Manjusha
Clipper, Lydia
Flannery, Brendan
Wisniewski, Stephen R.
Classification and Regression Tree (CART) analysis to predict influenza in primary care patients
title Classification and Regression Tree (CART) analysis to predict influenza in primary care patients
title_full Classification and Regression Tree (CART) analysis to predict influenza in primary care patients
title_fullStr Classification and Regression Tree (CART) analysis to predict influenza in primary care patients
title_full_unstemmed Classification and Regression Tree (CART) analysis to predict influenza in primary care patients
title_short Classification and Regression Tree (CART) analysis to predict influenza in primary care patients
title_sort classification and regression tree (cart) analysis to predict influenza in primary care patients
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034457/
https://www.ncbi.nlm.nih.gov/pubmed/27659721
http://dx.doi.org/10.1186/s12879-016-1839-x
work_keys_str_mv AT zimmermanrichardk classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT balasubramanigk classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT nowalkmarypatricia classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT engheather classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT urbanskileonard classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT jacksonmichaell classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT jacksonlisaa classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT mcleanhuongq classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT belongiaedwarda classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT montoarnolds classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT maloshryane classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT gaglanimanjusha classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT clipperlydia classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT flannerybrendan classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients
AT wisniewskistephenr classificationandregressiontreecartanalysistopredictinfluenzainprimarycarepatients