Cargando…

Imprinted DNA methylation reconstituted at a non-imprinted locus

BACKGROUND: In mammals, tight regulation of cytosine methylation is required for embryonic development and cellular differentiation. The trans-acting DNA methyltransferases that catalyze this modification have been identified and characterized; however, these proteins lack sequence specificity, leav...

Descripción completa

Detalles Bibliográficos
Autores principales: Taylor, David H., McLean, Chelsea M., Wu, Warren L., Wang, Alex B., Soloway, Paul D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034545/
https://www.ncbi.nlm.nih.gov/pubmed/27688812
http://dx.doi.org/10.1186/s13072-016-0094-0
_version_ 1782455292057878528
author Taylor, David H.
McLean, Chelsea M.
Wu, Warren L.
Wang, Alex B.
Soloway, Paul D.
author_facet Taylor, David H.
McLean, Chelsea M.
Wu, Warren L.
Wang, Alex B.
Soloway, Paul D.
author_sort Taylor, David H.
collection PubMed
description BACKGROUND: In mammals, tight regulation of cytosine methylation is required for embryonic development and cellular differentiation. The trans-acting DNA methyltransferases that catalyze this modification have been identified and characterized; however, these proteins lack sequence specificity, leaving the mechanism of targeting unknown. A cis-acting regulator within the Rasgrf1 imprinting control region (ICR) is necessary for establishment and maintenance of local imprinted methylation. Here, we investigate whether 3-kb of sequence from the Rasgrf1 ICR is sufficient to direct appropriate imprinted methylation and target gene expression patterns when ectopically inserted at the Wnt1 locus. RESULTS: The Rasgrf1 ICR at Wnt1 lacked somatic methylation when maternally transmitted and was fully methylated upon paternal transmission, consistent with its behavior at the Rasgrf1 locus. It was unmethylated in the female germline and was enriched for methylation in the male germline, though not to the levels seen at the endogenous Rasgrf1 allele. Wnt1 expression was not imprinted by the ectopic ICR, likely due to additional sequences being required for this function. CONCLUSIONS: We have identified sequences that are sufficient for partial establishment and full maintenance of the imprinted DNA methylation patterns. Because full somatic methylation can occur without full gametic methylation, we infer that somatic methylation of the Rasgrf1 ICR is not simply a consequence of maintained gametic methylation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13072-016-0094-0) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5034545
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-50345452016-09-29 Imprinted DNA methylation reconstituted at a non-imprinted locus Taylor, David H. McLean, Chelsea M. Wu, Warren L. Wang, Alex B. Soloway, Paul D. Epigenetics Chromatin Research BACKGROUND: In mammals, tight regulation of cytosine methylation is required for embryonic development and cellular differentiation. The trans-acting DNA methyltransferases that catalyze this modification have been identified and characterized; however, these proteins lack sequence specificity, leaving the mechanism of targeting unknown. A cis-acting regulator within the Rasgrf1 imprinting control region (ICR) is necessary for establishment and maintenance of local imprinted methylation. Here, we investigate whether 3-kb of sequence from the Rasgrf1 ICR is sufficient to direct appropriate imprinted methylation and target gene expression patterns when ectopically inserted at the Wnt1 locus. RESULTS: The Rasgrf1 ICR at Wnt1 lacked somatic methylation when maternally transmitted and was fully methylated upon paternal transmission, consistent with its behavior at the Rasgrf1 locus. It was unmethylated in the female germline and was enriched for methylation in the male germline, though not to the levels seen at the endogenous Rasgrf1 allele. Wnt1 expression was not imprinted by the ectopic ICR, likely due to additional sequences being required for this function. CONCLUSIONS: We have identified sequences that are sufficient for partial establishment and full maintenance of the imprinted DNA methylation patterns. Because full somatic methylation can occur without full gametic methylation, we infer that somatic methylation of the Rasgrf1 ICR is not simply a consequence of maintained gametic methylation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13072-016-0094-0) contains supplementary material, which is available to authorized users. BioMed Central 2016-09-22 /pmc/articles/PMC5034545/ /pubmed/27688812 http://dx.doi.org/10.1186/s13072-016-0094-0 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Taylor, David H.
McLean, Chelsea M.
Wu, Warren L.
Wang, Alex B.
Soloway, Paul D.
Imprinted DNA methylation reconstituted at a non-imprinted locus
title Imprinted DNA methylation reconstituted at a non-imprinted locus
title_full Imprinted DNA methylation reconstituted at a non-imprinted locus
title_fullStr Imprinted DNA methylation reconstituted at a non-imprinted locus
title_full_unstemmed Imprinted DNA methylation reconstituted at a non-imprinted locus
title_short Imprinted DNA methylation reconstituted at a non-imprinted locus
title_sort imprinted dna methylation reconstituted at a non-imprinted locus
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034545/
https://www.ncbi.nlm.nih.gov/pubmed/27688812
http://dx.doi.org/10.1186/s13072-016-0094-0
work_keys_str_mv AT taylordavidh imprinteddnamethylationreconstitutedatanonimprintedlocus
AT mcleanchelseam imprinteddnamethylationreconstitutedatanonimprintedlocus
AT wuwarrenl imprinteddnamethylationreconstitutedatanonimprintedlocus
AT wangalexb imprinteddnamethylationreconstitutedatanonimprintedlocus
AT solowaypauld imprinteddnamethylationreconstitutedatanonimprintedlocus