Cargando…

Dynamic DNA methylation landscape defines brown and white cell specificity during adipogenesis

OBJECTIVE: DNA methylation may be a stable epigenetic contributor to defining fat cell lineage. METHODS: We performed reduced representation bisulfite sequencing (RRBS) and RNA-seq to depict a genome-wide integrative view of the DNA methylome and transcriptome during brown and white adipogenesis. RE...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Yen Ching, Chia, Sook Yoong, Jin, Shengnan, Han, Weiping, Ding, Chunming, Sun, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034609/
https://www.ncbi.nlm.nih.gov/pubmed/27689016
http://dx.doi.org/10.1016/j.molmet.2016.08.006
Descripción
Sumario:OBJECTIVE: DNA methylation may be a stable epigenetic contributor to defining fat cell lineage. METHODS: We performed reduced representation bisulfite sequencing (RRBS) and RNA-seq to depict a genome-wide integrative view of the DNA methylome and transcriptome during brown and white adipogenesis. RESULTS: Our analysis demonstrated that DNA methylation is a stable epigenetic signature for brown and white cell lineage before, during, and after differentiation. We identified 31 genes whose promoters were significantly differentially methylated between white and brown adipogenesis at all three time points of differentiation. Among them, five genes belong to the Hox family; their expression levels were anti-correlated with promoter methylation, suggesting a regulatory role of DNA methylation in transcription. Blocking DNA methylation with 5-Aza-cytidine increased the expression of these genes, with the most prominent effect on Hoxc10, a repressor of BAT marker expression. CONCLUSIONS: Our data suggest that DNA methylation may play an important role in lineage-specific development in adipocytes.