Cargando…
Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism
OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related to i...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034611/ https://www.ncbi.nlm.nih.gov/pubmed/27689005 http://dx.doi.org/10.1016/j.molmet.2016.08.001 |
_version_ | 1782455306027008000 |
---|---|
author | Lerin, Carles Goldfine, Allison B. Boes, Tanner Liu, Manway Kasif, Simon Dreyfuss, Jonathan M. De Sousa-Coelho, Ana Luisa Daher, Grace Manoli, Irini Sysol, Justin R. Isganaitis, Elvira Jessen, Niels Goodyear, Laurie J. Beebe, Kirk Gall, Walt Venditti, Charles P. Patti, Mary-Elizabeth |
author_facet | Lerin, Carles Goldfine, Allison B. Boes, Tanner Liu, Manway Kasif, Simon Dreyfuss, Jonathan M. De Sousa-Coelho, Ana Luisa Daher, Grace Manoli, Irini Sysol, Justin R. Isganaitis, Elvira Jessen, Niels Goodyear, Laurie J. Beebe, Kirk Gall, Walt Venditti, Charles P. Patti, Mary-Elizabeth |
author_sort | Lerin, Carles |
collection | PubMed |
description | OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (S(I), 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D. |
format | Online Article Text |
id | pubmed-5034611 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-50346112016-09-29 Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism Lerin, Carles Goldfine, Allison B. Boes, Tanner Liu, Manway Kasif, Simon Dreyfuss, Jonathan M. De Sousa-Coelho, Ana Luisa Daher, Grace Manoli, Irini Sysol, Justin R. Isganaitis, Elvira Jessen, Niels Goodyear, Laurie J. Beebe, Kirk Gall, Walt Venditti, Charles P. Patti, Mary-Elizabeth Mol Metab Original Article OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (S(I), 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D. Elsevier 2016-08-06 /pmc/articles/PMC5034611/ /pubmed/27689005 http://dx.doi.org/10.1016/j.molmet.2016.08.001 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Lerin, Carles Goldfine, Allison B. Boes, Tanner Liu, Manway Kasif, Simon Dreyfuss, Jonathan M. De Sousa-Coelho, Ana Luisa Daher, Grace Manoli, Irini Sysol, Justin R. Isganaitis, Elvira Jessen, Niels Goodyear, Laurie J. Beebe, Kirk Gall, Walt Venditti, Charles P. Patti, Mary-Elizabeth Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism |
title | Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism |
title_full | Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism |
title_fullStr | Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism |
title_full_unstemmed | Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism |
title_short | Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism |
title_sort | defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034611/ https://www.ncbi.nlm.nih.gov/pubmed/27689005 http://dx.doi.org/10.1016/j.molmet.2016.08.001 |
work_keys_str_mv | AT lerincarles defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT goldfineallisonb defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT boestanner defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT liumanway defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT kasifsimon defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT dreyfussjonathanm defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT desousacoelhoanaluisa defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT dahergrace defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT manoliirini defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT sysoljustinr defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT isganaitiselvira defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT jessenniels defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT goodyearlauriej defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT beebekirk defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT gallwalt defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT venditticharlesp defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism AT pattimaryelizabeth defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism |