Cargando…

Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related to i...

Descripción completa

Detalles Bibliográficos
Autores principales: Lerin, Carles, Goldfine, Allison B., Boes, Tanner, Liu, Manway, Kasif, Simon, Dreyfuss, Jonathan M., De Sousa-Coelho, Ana Luisa, Daher, Grace, Manoli, Irini, Sysol, Justin R., Isganaitis, Elvira, Jessen, Niels, Goodyear, Laurie J., Beebe, Kirk, Gall, Walt, Venditti, Charles P., Patti, Mary-Elizabeth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034611/
https://www.ncbi.nlm.nih.gov/pubmed/27689005
http://dx.doi.org/10.1016/j.molmet.2016.08.001
_version_ 1782455306027008000
author Lerin, Carles
Goldfine, Allison B.
Boes, Tanner
Liu, Manway
Kasif, Simon
Dreyfuss, Jonathan M.
De Sousa-Coelho, Ana Luisa
Daher, Grace
Manoli, Irini
Sysol, Justin R.
Isganaitis, Elvira
Jessen, Niels
Goodyear, Laurie J.
Beebe, Kirk
Gall, Walt
Venditti, Charles P.
Patti, Mary-Elizabeth
author_facet Lerin, Carles
Goldfine, Allison B.
Boes, Tanner
Liu, Manway
Kasif, Simon
Dreyfuss, Jonathan M.
De Sousa-Coelho, Ana Luisa
Daher, Grace
Manoli, Irini
Sysol, Justin R.
Isganaitis, Elvira
Jessen, Niels
Goodyear, Laurie J.
Beebe, Kirk
Gall, Walt
Venditti, Charles P.
Patti, Mary-Elizabeth
author_sort Lerin, Carles
collection PubMed
description OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (S(I), 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.
format Online
Article
Text
id pubmed-5034611
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-50346112016-09-29 Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism Lerin, Carles Goldfine, Allison B. Boes, Tanner Liu, Manway Kasif, Simon Dreyfuss, Jonathan M. De Sousa-Coelho, Ana Luisa Daher, Grace Manoli, Irini Sysol, Justin R. Isganaitis, Elvira Jessen, Niels Goodyear, Laurie J. Beebe, Kirk Gall, Walt Venditti, Charles P. Patti, Mary-Elizabeth Mol Metab Original Article OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (S(I), 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D. Elsevier 2016-08-06 /pmc/articles/PMC5034611/ /pubmed/27689005 http://dx.doi.org/10.1016/j.molmet.2016.08.001 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Lerin, Carles
Goldfine, Allison B.
Boes, Tanner
Liu, Manway
Kasif, Simon
Dreyfuss, Jonathan M.
De Sousa-Coelho, Ana Luisa
Daher, Grace
Manoli, Irini
Sysol, Justin R.
Isganaitis, Elvira
Jessen, Niels
Goodyear, Laurie J.
Beebe, Kirk
Gall, Walt
Venditti, Charles P.
Patti, Mary-Elizabeth
Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism
title Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism
title_full Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism
title_fullStr Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism
title_full_unstemmed Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism
title_short Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism
title_sort defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034611/
https://www.ncbi.nlm.nih.gov/pubmed/27689005
http://dx.doi.org/10.1016/j.molmet.2016.08.001
work_keys_str_mv AT lerincarles defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT goldfineallisonb defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT boestanner defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT liumanway defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT kasifsimon defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT dreyfussjonathanm defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT desousacoelhoanaluisa defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT dahergrace defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT manoliirini defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT sysoljustinr defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT isganaitiselvira defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT jessenniels defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT goodyearlauriej defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT beebekirk defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT gallwalt defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT venditticharlesp defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism
AT pattimaryelizabeth defectsinmusclebranchedchainaminoacidoxidationcontributetoimpairedlipidmetabolism