Cargando…

Lightwave-driven quasiparticle collisions on a sub-cycle timescale

Ever since Ernest Rutherford first scattered α-particles from gold foils1, collision experiments have revealed unique insights into atoms, nuclei, and elementary particles2. In solids, many-body correlations also lead to characteristic resonances3, called quasiparticles, such as excitons, dropletons...

Descripción completa

Detalles Bibliográficos
Autores principales: Langer, F., Hohenleutner, M., Schmid, C., Poellmann, C., Nagler, P., Korn, T., Schüller, C., Sherwin, M. S., Huttner, U., Steiner, J. T., Koch, S. W., Kira, M., Huber, R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034899/
https://www.ncbi.nlm.nih.gov/pubmed/27172045
http://dx.doi.org/10.1038/nature17958
_version_ 1782455345290936320
author Langer, F.
Hohenleutner, M.
Schmid, C.
Poellmann, C.
Nagler, P.
Korn, T.
Schüller, C.
Sherwin, M. S.
Huttner, U.
Steiner, J. T.
Koch, S. W.
Kira, M.
Huber, R.
author_facet Langer, F.
Hohenleutner, M.
Schmid, C.
Poellmann, C.
Nagler, P.
Korn, T.
Schüller, C.
Sherwin, M. S.
Huttner, U.
Steiner, J. T.
Koch, S. W.
Kira, M.
Huber, R.
author_sort Langer, F.
collection PubMed
description Ever since Ernest Rutherford first scattered α-particles from gold foils1, collision experiments have revealed unique insights into atoms, nuclei, and elementary particles2. In solids, many-body correlations also lead to characteristic resonances3, called quasiparticles, such as excitons, dropletons4, polarons, or Cooper pairs. Their structure and dynamics define spectacular macroscopic phenomena, ranging from Mott insulating states via spontaneous spin and charge order to high-temperature superconductivity5. Fundamental research would immensely benefit from quasiparticle colliders, but the notoriously short lifetimes of quasiparticles6 have challenged practical solutions. Here we exploit lightwave-driven charge transport7–24, the backbone of attosecond science9–13, to explore ultrafast quasiparticle collisions directly in the time domain: A femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying wave packet dynamics, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands17–19 of the optical excitation. A full quantum theory explains our observations microscopically. This approach opens the door to collision experiments with a broad variety of complex quasiparticles and suggests a promising new way of sub-femtosecond pulse generation.
format Online
Article
Text
id pubmed-5034899
institution National Center for Biotechnology Information
language English
publishDate 2016
record_format MEDLINE/PubMed
spelling pubmed-50348992016-11-12 Lightwave-driven quasiparticle collisions on a sub-cycle timescale Langer, F. Hohenleutner, M. Schmid, C. Poellmann, C. Nagler, P. Korn, T. Schüller, C. Sherwin, M. S. Huttner, U. Steiner, J. T. Koch, S. W. Kira, M. Huber, R. Nature Article Ever since Ernest Rutherford first scattered α-particles from gold foils1, collision experiments have revealed unique insights into atoms, nuclei, and elementary particles2. In solids, many-body correlations also lead to characteristic resonances3, called quasiparticles, such as excitons, dropletons4, polarons, or Cooper pairs. Their structure and dynamics define spectacular macroscopic phenomena, ranging from Mott insulating states via spontaneous spin and charge order to high-temperature superconductivity5. Fundamental research would immensely benefit from quasiparticle colliders, but the notoriously short lifetimes of quasiparticles6 have challenged practical solutions. Here we exploit lightwave-driven charge transport7–24, the backbone of attosecond science9–13, to explore ultrafast quasiparticle collisions directly in the time domain: A femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying wave packet dynamics, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands17–19 of the optical excitation. A full quantum theory explains our observations microscopically. This approach opens the door to collision experiments with a broad variety of complex quasiparticles and suggests a promising new way of sub-femtosecond pulse generation. 2016-05-11 /pmc/articles/PMC5034899/ /pubmed/27172045 http://dx.doi.org/10.1038/nature17958 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Langer, F.
Hohenleutner, M.
Schmid, C.
Poellmann, C.
Nagler, P.
Korn, T.
Schüller, C.
Sherwin, M. S.
Huttner, U.
Steiner, J. T.
Koch, S. W.
Kira, M.
Huber, R.
Lightwave-driven quasiparticle collisions on a sub-cycle timescale
title Lightwave-driven quasiparticle collisions on a sub-cycle timescale
title_full Lightwave-driven quasiparticle collisions on a sub-cycle timescale
title_fullStr Lightwave-driven quasiparticle collisions on a sub-cycle timescale
title_full_unstemmed Lightwave-driven quasiparticle collisions on a sub-cycle timescale
title_short Lightwave-driven quasiparticle collisions on a sub-cycle timescale
title_sort lightwave-driven quasiparticle collisions on a sub-cycle timescale
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034899/
https://www.ncbi.nlm.nih.gov/pubmed/27172045
http://dx.doi.org/10.1038/nature17958
work_keys_str_mv AT langerf lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT hohenleutnerm lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT schmidc lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT poellmannc lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT naglerp lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT kornt lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT schullerc lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT sherwinms lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT huttneru lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT steinerjt lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT kochsw lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT kiram lightwavedrivenquasiparticlecollisionsonasubcycletimescale
AT huberr lightwavedrivenquasiparticlecollisionsonasubcycletimescale