Cargando…
Morphological Response of Eight Quercus Species to Simulated Wind Load
Leaf shape, including leaf size, leaf dissection index (LDI), and venation distribution, strongly impacts leaf physiology and the forces of momentum exerted on leaves or the canopy under windy conditions. Yet, little has been known about how leaf shape affects the morphological response of trees to...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035066/ https://www.ncbi.nlm.nih.gov/pubmed/27662594 http://dx.doi.org/10.1371/journal.pone.0163613 |
Sumario: | Leaf shape, including leaf size, leaf dissection index (LDI), and venation distribution, strongly impacts leaf physiology and the forces of momentum exerted on leaves or the canopy under windy conditions. Yet, little has been known about how leaf shape affects the morphological response of trees to wind load. We studied eight Quercus species, with different leaf shapes, to determine the morphological response to simulated wind load. Quercus trees with long elliptical leaves, were significantly affected by wind load (P< 0.05), as indicted by smaller specific leaf area (SLA), stem base diameter and stem height under windy conditions when compared to the control. The Quercus trees with leaves characterized by lanceolate or sinuous edges, showed positive morphological responses to wind load, such as bigger leaf thickness, larger stem diameter, allocation to root biomass, and smaller stem height (P< 0.05). These morphological responses to wind can reduce drag and increase the mechanical strength of the tree. Leaf dissection index (LDI), an important index of leaf shape, was correlated with morphological response to wind load (P< 0.05), including differences in SLA, in stem base diameter and in allocation to root biomass. These results suggest that trees with higher LDI, such as those with more and/or deeper lobes, are better adapted to wind load. |
---|