Cargando…
LMethyR-SVM: Predict Human Enhancers Using Low Methylated Regions based on Weighted Support Vector Machines
BACKGROUND: The identification of enhancers is a challenging task. Various types of epigenetic information including histone modification have been utilized in the construction of enhancer prediction models based on a diverse panel of machine learning schemes. However, DNA methylation profiles gener...
Autores principales: | Xu, Jingting, Hu, Hong, Dai, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035071/ https://www.ncbi.nlm.nih.gov/pubmed/27662487 http://dx.doi.org/10.1371/journal.pone.0163491 |
Ejemplares similares
-
Correction: LMethyR-SVM: Predict Human Enhancers Using Low Methylated Regions based on Weighted Support Vector Machines
por: Xu, Jingting, et al.
Publicado: (2016) -
CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks
por: Gillani, Zeeshan, et al.
Publicado: (2014) -
Data on Support Vector Machines (SVM) model to forecast photovoltaic power
por: Malvoni, M., et al.
Publicado: (2016) -
Parallelization of multicategory support vector machines (PMC-SVM) for classifying microarray data
por: Zhang, Chaoyang, et al.
Publicado: (2006) -
Quality assessment of tandem mass spectra using support vector machine (SVM)
por: Zou, An-Min, et al.
Publicado: (2009)