Cargando…
Faster permutation inference in brain imaging
Permutation tests are increasingly being used as a reliable method for inference in neuroimaging analysis. However, they are computationally intensive. For small, non-imaging datasets, recomputing a model thousands of times is seldom a problem, but for large, complex models this can be prohibitively...
Autores principales: | Winkler, Anderson M., Ridgway, Gerard R., Douaud, Gwenaëlle, Nichols, Thomas E., Smith, Stephen M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035139/ https://www.ncbi.nlm.nih.gov/pubmed/27288322 http://dx.doi.org/10.1016/j.neuroimage.2016.05.068 |
Ejemplares similares
-
Permutation inference for the general linear model
por: Winkler, Anderson M., et al.
Publicado: (2014) -
Permutation inference for canonical correlation analysis
por: Winkler, Anderson M., et al.
Publicado: (2020) -
Multi-level block permutation
por: Winkler, Anderson M., et al.
Publicado: (2015) -
Accelerated estimation and permutation inference for ACE modeling
por: Chen, Xu, et al.
Publicado: (2019) -
Non‐parametric combination and related permutation tests for neuroimaging
por: Winkler, Anderson M., et al.
Publicado: (2016)