Cargando…

Variation of global DNA methylation levels with age and in autistic children

BACKGROUND: The change in epigenetic signatures, in particular DNA methylation, has been proposed as risk markers for various age-related diseases. However, the course of variation in methylation levels with age, the difference in methylation between genders, and methylation-disease association at t...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsang, Shui-Ying, Ahmad, Tanveer, Mat, Flora W. K., Zhao, Cunyou, Xiao, Shifu, Xia, Kun, Xue, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035466/
https://www.ncbi.nlm.nih.gov/pubmed/27663196
http://dx.doi.org/10.1186/s40246-016-0086-y
Descripción
Sumario:BACKGROUND: The change in epigenetic signatures, in particular DNA methylation, has been proposed as risk markers for various age-related diseases. However, the course of variation in methylation levels with age, the difference in methylation between genders, and methylation-disease association at the whole genome level is unclear. In the present study, genome-wide methylation levels in DNA extracted from peripheral blood for 2116 healthy Chinese in the 2–97 age range and 280 autistic trios were examined using the fluorescence polarization-based genome-wide DNA methylation quantification method developed by us. RESULTS: Genome-wide or global DNA methylation levels proceeded through multiple phases of variation with age, consisting of a steady increase from age 2 to 25 (r = 0.382) and another rise from age 41 to 55 to reach a peak level of ~80 % (r = 0.265), followed by a sharp decrease to ~40 % in the mid-1970s (age 56 to 75; r = −0.395) and leveling off thereafter. Significant gender effect in methylation levels was observed only for the 41–55 age group in which methylation in females was significantly higher than in males (p = 0.010). In addition, global methylation level was significantly higher in autistic children than in age-matched healthy children (p < 0.001). CONCLUSIONS: The multiphasic nature of changes in global methylation levels with age was delineated, and investigation into the factors underlying this profile will be essential to a proper understanding of the aging process. Furthermore, this first report of global hypermethylation in autistic children also illustrates the importance of age-matched controls in characterization of disease-associated variations in DNA methylation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40246-016-0086-y) contains supplementary material, which is available to authorized users.