Cargando…
rapidGSEA: Speeding up gene set enrichment analysis on multi-core CPUs and CUDA-enabled GPUs
BACKGROUND: Gene Set Enrichment Analysis (GSEA) is a popular method to reveal significant dependencies between predefined sets of gene symbols and observed phenotypes by evaluating the deviation of gene expression values between cases and controls. An established measure of inter-class deviation, th...
Autores principales: | Hundt, Christian, Hildebrandt, Andreas, Schmidt, Bertil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035472/ https://www.ncbi.nlm.nih.gov/pubmed/27663265 http://dx.doi.org/10.1186/s12859-016-1244-x |
Ejemplares similares
-
Accelerating metagenomic read classification on CUDA-enabled GPUs
por: Kobus, Robin, et al.
Publicado: (2017) -
BLAMM: BLAS-based algorithm for finding position weight matrix occurrences in DNA sequences on CPUs and GPUs
por: Fostier, Jan
Publicado: (2020) -
multiGSEA: a GSEA-based pathway enrichment analysis for multi-omics data
por: Canzler, Sebastian, et al.
Publicado: (2020) -
BROCCOLI: Software for fast fMRI analysis on many-core CPUs and GPUs
por: Eklund, Anders, et al.
Publicado: (2014) -
CMS High Level Trigger performance comparison on CPUs and GPUs
por: Bocci, Andrea
Publicado: (2023)