Cargando…
Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico
Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been don...
Autores principales: | Johansson, Michael A., Reich, Nicholas G., Hota, Aditi, Brownstein, John S., Santillana, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036038/ https://www.ncbi.nlm.nih.gov/pubmed/27665707 http://dx.doi.org/10.1038/srep33707 |
Ejemplares similares
-
Using Google Dengue Trends to Estimate Climate Effects in Mexico
por: Gluskin, Rebecca T., et al.
Publicado: (2013) -
On the reliability of seasonal climate forecasts
por: Weisheimer, A., et al.
Publicado: (2014) -
Real-time Forecasting of the 2014 Dengue Fever Season in
Thailand
por: Reich, Nicholas G., et al.
Publicado: (2015) -
Forecasting Peaks of Seasonal Influenza Epidemics
por: Nsoesie, Elaine, et al.
Publicado: (2013) -
Influenza forecasting for French regions combining EHR, web and climatic data sources with a machine learning ensemble approach
por: Poirier, Canelle, et al.
Publicado: (2021)