Cargando…
CRHunter: integrating multifaceted information to predict catalytic residues in enzymes
A variety of algorithms have been developed for catalytic residue prediction based on either feature- or template-based methodology. However, no studies have systematically compared these two strategies and further considered whether their combination could improve the prediction performance. Herein...
Autores principales: | Sun, Jun, Wang, Jia, Xiong, Dan, Hu, Jian, Liu, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036049/ https://www.ncbi.nlm.nih.gov/pubmed/27665935 http://dx.doi.org/10.1038/srep34044 |
Ejemplares similares
-
ResBoost: characterizing and predicting catalytic residues in enzymes
por: Alterovitz, Ron, et al.
Publicado: (2009) -
PINGU: PredIction of eNzyme catalytic residues usinG seqUence information
por: Pai, Priyadarshini P., et al.
Publicado: (2015) -
Serratiopeptidase: An integrated View of Multifaceted Therapeutic Enzyme
por: Nair, Sreelakshmi R., et al.
Publicado: (2022) -
An assessment of catalytic residue 3D ensembles for the prediction of enzyme function
por: Žváček, Clemens, et al.
Publicado: (2015) -
On the Structural Context and Identification of Enzyme Catalytic Residues
por: Chien, Yu-Tung, et al.
Publicado: (2013)