Cargando…

Facile transformation of FeO/Fe(3)O(4) core-shell nanocubes to Fe(3)O(4) via magnetic stimulation

Here, we propose the use of magnetic hyperthermia as a means to trigger the oxidation of Fe(1−x)O/Fe(3−δ)O(4) core-shell nanocubes to Fe(3−δ)O(4) phase. As a first relevant consequence, the specific absorption rate (SAR) of the initial core-shell nanocubes doubles after exposure to 25 cycles of alte...

Descripción completa

Detalles Bibliográficos
Autores principales: Lak, Aidin, Niculaes, Dina, Anyfantis, George C., Bertoni, Giovanni, Barthel, Markus J., Marras, Sergio, Cassani, Marco, Nitti, Simone, Athanassiou, Athanassia, Giannini, Cinzia, Pellegrino, Teresa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036086/
https://www.ncbi.nlm.nih.gov/pubmed/27665698
http://dx.doi.org/10.1038/srep33295
_version_ 1782455492521492480
author Lak, Aidin
Niculaes, Dina
Anyfantis, George C.
Bertoni, Giovanni
Barthel, Markus J.
Marras, Sergio
Cassani, Marco
Nitti, Simone
Athanassiou, Athanassia
Giannini, Cinzia
Pellegrino, Teresa
author_facet Lak, Aidin
Niculaes, Dina
Anyfantis, George C.
Bertoni, Giovanni
Barthel, Markus J.
Marras, Sergio
Cassani, Marco
Nitti, Simone
Athanassiou, Athanassia
Giannini, Cinzia
Pellegrino, Teresa
author_sort Lak, Aidin
collection PubMed
description Here, we propose the use of magnetic hyperthermia as a means to trigger the oxidation of Fe(1−x)O/Fe(3−δ)O(4) core-shell nanocubes to Fe(3−δ)O(4) phase. As a first relevant consequence, the specific absorption rate (SAR) of the initial core-shell nanocubes doubles after exposure to 25 cycles of alternating magnetic field stimulation. The improved SAR value was attributed to a gradual transformation of the Fe(1−x)O core to Fe(3−δ)O(4), as evidenced by structural analysis including high resolution electron microscopy and Rietveld analysis of X-ray diffraction patterns. The magnetically oxidized nanocubes, having large and coherent Fe(3−δ)O(4) domains, reveal high saturation magnetization and behave superparamagnetically at room temperature. In comparison, the treatment of the same starting core-shell nanocubes by commonly used thermal annealing process renders a transformation to γ-Fe(2)O(3). In contrast to other thermal annealing processes, the method here presented has the advantage of promoting the oxidation at a macroscopic temperature below 37 °C. Using this soft oxidation process, we demonstrate that biotin-functionalized core-shell nanocubes can undergo a mild self-oxidation transformation without losing their functional molecular binding activity.
format Online
Article
Text
id pubmed-5036086
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50360862016-09-30 Facile transformation of FeO/Fe(3)O(4) core-shell nanocubes to Fe(3)O(4) via magnetic stimulation Lak, Aidin Niculaes, Dina Anyfantis, George C. Bertoni, Giovanni Barthel, Markus J. Marras, Sergio Cassani, Marco Nitti, Simone Athanassiou, Athanassia Giannini, Cinzia Pellegrino, Teresa Sci Rep Article Here, we propose the use of magnetic hyperthermia as a means to trigger the oxidation of Fe(1−x)O/Fe(3−δ)O(4) core-shell nanocubes to Fe(3−δ)O(4) phase. As a first relevant consequence, the specific absorption rate (SAR) of the initial core-shell nanocubes doubles after exposure to 25 cycles of alternating magnetic field stimulation. The improved SAR value was attributed to a gradual transformation of the Fe(1−x)O core to Fe(3−δ)O(4), as evidenced by structural analysis including high resolution electron microscopy and Rietveld analysis of X-ray diffraction patterns. The magnetically oxidized nanocubes, having large and coherent Fe(3−δ)O(4) domains, reveal high saturation magnetization and behave superparamagnetically at room temperature. In comparison, the treatment of the same starting core-shell nanocubes by commonly used thermal annealing process renders a transformation to γ-Fe(2)O(3). In contrast to other thermal annealing processes, the method here presented has the advantage of promoting the oxidation at a macroscopic temperature below 37 °C. Using this soft oxidation process, we demonstrate that biotin-functionalized core-shell nanocubes can undergo a mild self-oxidation transformation without losing their functional molecular binding activity. Nature Publishing Group 2016-09-26 /pmc/articles/PMC5036086/ /pubmed/27665698 http://dx.doi.org/10.1038/srep33295 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Lak, Aidin
Niculaes, Dina
Anyfantis, George C.
Bertoni, Giovanni
Barthel, Markus J.
Marras, Sergio
Cassani, Marco
Nitti, Simone
Athanassiou, Athanassia
Giannini, Cinzia
Pellegrino, Teresa
Facile transformation of FeO/Fe(3)O(4) core-shell nanocubes to Fe(3)O(4) via magnetic stimulation
title Facile transformation of FeO/Fe(3)O(4) core-shell nanocubes to Fe(3)O(4) via magnetic stimulation
title_full Facile transformation of FeO/Fe(3)O(4) core-shell nanocubes to Fe(3)O(4) via magnetic stimulation
title_fullStr Facile transformation of FeO/Fe(3)O(4) core-shell nanocubes to Fe(3)O(4) via magnetic stimulation
title_full_unstemmed Facile transformation of FeO/Fe(3)O(4) core-shell nanocubes to Fe(3)O(4) via magnetic stimulation
title_short Facile transformation of FeO/Fe(3)O(4) core-shell nanocubes to Fe(3)O(4) via magnetic stimulation
title_sort facile transformation of feo/fe(3)o(4) core-shell nanocubes to fe(3)o(4) via magnetic stimulation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036086/
https://www.ncbi.nlm.nih.gov/pubmed/27665698
http://dx.doi.org/10.1038/srep33295
work_keys_str_mv AT lakaidin faciletransformationoffeofe3o4coreshellnanocubestofe3o4viamagneticstimulation
AT niculaesdina faciletransformationoffeofe3o4coreshellnanocubestofe3o4viamagneticstimulation
AT anyfantisgeorgec faciletransformationoffeofe3o4coreshellnanocubestofe3o4viamagneticstimulation
AT bertonigiovanni faciletransformationoffeofe3o4coreshellnanocubestofe3o4viamagneticstimulation
AT barthelmarkusj faciletransformationoffeofe3o4coreshellnanocubestofe3o4viamagneticstimulation
AT marrassergio faciletransformationoffeofe3o4coreshellnanocubestofe3o4viamagneticstimulation
AT cassanimarco faciletransformationoffeofe3o4coreshellnanocubestofe3o4viamagneticstimulation
AT nittisimone faciletransformationoffeofe3o4coreshellnanocubestofe3o4viamagneticstimulation
AT athanassiouathanassia faciletransformationoffeofe3o4coreshellnanocubestofe3o4viamagneticstimulation
AT gianninicinzia faciletransformationoffeofe3o4coreshellnanocubestofe3o4viamagneticstimulation
AT pellegrinoteresa faciletransformationoffeofe3o4coreshellnanocubestofe3o4viamagneticstimulation