Cargando…

Primary thermometry triad at 6 mK in mesoscopic circuits

Quantum physics emerge and develop as temperature is reduced. Although mesoscopic electrical circuits constitute an outstanding platform to explore quantum behaviour, the challenge in cooling the electrons impedes their potential. The strong coupling of such micrometre-scale devices with the measure...

Descripción completa

Detalles Bibliográficos
Autores principales: Iftikhar, Z., Anthore, A., Jezouin, S., Parmentier, F. D., Jin, Y., Cavanna, A., Ouerghi, A., Gennser, U., Pierre, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036159/
https://www.ncbi.nlm.nih.gov/pubmed/27659941
http://dx.doi.org/10.1038/ncomms12908
_version_ 1782455508021542912
author Iftikhar, Z.
Anthore, A.
Jezouin, S.
Parmentier, F. D.
Jin, Y.
Cavanna, A.
Ouerghi, A.
Gennser, U.
Pierre, F.
author_facet Iftikhar, Z.
Anthore, A.
Jezouin, S.
Parmentier, F. D.
Jin, Y.
Cavanna, A.
Ouerghi, A.
Gennser, U.
Pierre, F.
author_sort Iftikhar, Z.
collection PubMed
description Quantum physics emerge and develop as temperature is reduced. Although mesoscopic electrical circuits constitute an outstanding platform to explore quantum behaviour, the challenge in cooling the electrons impedes their potential. The strong coupling of such micrometre-scale devices with the measurement lines, combined with the weak coupling to the substrate, makes them extremely difficult to thermalize below 10 mK and imposes in situ thermometers. Here we demonstrate electronic quantum transport at 6 mK in micrometre-scale mesoscopic circuits. The thermometry methods are established by the comparison of three in situ primary thermometers, each involving a different underlying physics. The employed combination of quantum shot noise, quantum back action of a resistive circuit and conductance oscillations of a single-electron transistor covers a remarkably broad spectrum of mesoscopic phenomena. The experiment, performed in vacuum using a standard cryogen-free dilution refrigerator, paves the way towards the sub-millikelvin range with additional thermalization and refrigeration techniques.
format Online
Article
Text
id pubmed-5036159
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50361592016-10-04 Primary thermometry triad at 6 mK in mesoscopic circuits Iftikhar, Z. Anthore, A. Jezouin, S. Parmentier, F. D. Jin, Y. Cavanna, A. Ouerghi, A. Gennser, U. Pierre, F. Nat Commun Article Quantum physics emerge and develop as temperature is reduced. Although mesoscopic electrical circuits constitute an outstanding platform to explore quantum behaviour, the challenge in cooling the electrons impedes their potential. The strong coupling of such micrometre-scale devices with the measurement lines, combined with the weak coupling to the substrate, makes them extremely difficult to thermalize below 10 mK and imposes in situ thermometers. Here we demonstrate electronic quantum transport at 6 mK in micrometre-scale mesoscopic circuits. The thermometry methods are established by the comparison of three in situ primary thermometers, each involving a different underlying physics. The employed combination of quantum shot noise, quantum back action of a resistive circuit and conductance oscillations of a single-electron transistor covers a remarkably broad spectrum of mesoscopic phenomena. The experiment, performed in vacuum using a standard cryogen-free dilution refrigerator, paves the way towards the sub-millikelvin range with additional thermalization and refrigeration techniques. Nature Publishing Group 2016-09-23 /pmc/articles/PMC5036159/ /pubmed/27659941 http://dx.doi.org/10.1038/ncomms12908 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Iftikhar, Z.
Anthore, A.
Jezouin, S.
Parmentier, F. D.
Jin, Y.
Cavanna, A.
Ouerghi, A.
Gennser, U.
Pierre, F.
Primary thermometry triad at 6 mK in mesoscopic circuits
title Primary thermometry triad at 6 mK in mesoscopic circuits
title_full Primary thermometry triad at 6 mK in mesoscopic circuits
title_fullStr Primary thermometry triad at 6 mK in mesoscopic circuits
title_full_unstemmed Primary thermometry triad at 6 mK in mesoscopic circuits
title_short Primary thermometry triad at 6 mK in mesoscopic circuits
title_sort primary thermometry triad at 6 mk in mesoscopic circuits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036159/
https://www.ncbi.nlm.nih.gov/pubmed/27659941
http://dx.doi.org/10.1038/ncomms12908
work_keys_str_mv AT iftikharz primarythermometrytriadat6mkinmesoscopiccircuits
AT anthorea primarythermometrytriadat6mkinmesoscopiccircuits
AT jezouins primarythermometrytriadat6mkinmesoscopiccircuits
AT parmentierfd primarythermometrytriadat6mkinmesoscopiccircuits
AT jiny primarythermometrytriadat6mkinmesoscopiccircuits
AT cavannaa primarythermometrytriadat6mkinmesoscopiccircuits
AT ouerghia primarythermometrytriadat6mkinmesoscopiccircuits
AT gennseru primarythermometrytriadat6mkinmesoscopiccircuits
AT pierref primarythermometrytriadat6mkinmesoscopiccircuits