Cargando…

Cross-shift study of exposure–response relationships between bioaerosol exposure and respiratory effects in the Norwegian grain and animal feed production industry

OBJECTIVE: We have studied cross-shift respiratory responses of several individual bioaerosol components of the dust in the grain and feed industry in Norway. METHODS: Cross-shift changes in lung function and nasal congestion, as well as in respiratory and systemic symptoms of 56 exposed workers and...

Descripción completa

Detalles Bibliográficos
Autores principales: Straumfors, Anne, Heldal, Kari Kulvik, Eduard, Wijnand, Wouters, Inge M, Ellingsen, Dag G, Skogstad, Marit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036228/
https://www.ncbi.nlm.nih.gov/pubmed/27473330
http://dx.doi.org/10.1136/oemed-2015-103438
Descripción
Sumario:OBJECTIVE: We have studied cross-shift respiratory responses of several individual bioaerosol components of the dust in the grain and feed industry in Norway. METHODS: Cross-shift changes in lung function and nasal congestion, as well as in respiratory and systemic symptoms of 56 exposed workers and 36 referents, were recorded on the same day as full-shift exposure to the inhalable aerosol fraction was assessed. Exposure–response associations were investigated by regression analysis. RESULTS: The workers were exposed on average to 1.0 mg/m(3) of grain dust, 440 EU/m(3) of endotoxin, 6 µg/m(3) of β-1,3-glucans, 17×10(4)/m(3) of bacteria and 4×10(4)/m(3) of fungal spores during work. The exposure was associated with higher prevalence of self-reported eye and airway symptoms, which were related to the individual microbial components in a complex manner. Fatigue and nose symptoms were strongest associated with fungal spores, cough with or without phlegm was associated with grain dust and fungal spores equally strong and wheeze/tight chest/dyspnoea was strongest associated with grain dust. Bioaerosol exposure did not lead to cross-shift lung function decline, but several microbial components had influence on nose congestion. CONCLUSIONS: Exposure to fungal spores and dust showed stronger associations with respiratory symptoms and fatigue than endotoxin exposure. The associations with dust suggest that there are other components in dust than the ones studied that induce these effects.