Cargando…
Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography(1)
Human VLDLs assembled in the liver and secreted into the circulation supply energy to peripheral tissues. VLDL lipolysis yields atherogenic LDLs and VLDL remnants that strongly correlate with CVD. Although the composition of VLDL particles has been well-characterized, their 3D structure is elusive b...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Biochemistry and Molecular Biology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036368/ https://www.ncbi.nlm.nih.gov/pubmed/27538822 http://dx.doi.org/10.1194/jlr.M070375 |
_version_ | 1782455545709461504 |
---|---|
author | Yu, Yadong Kuang, Yu-Lin Lei, Dongsheng Zhai, Xiaobo Zhang, Meng Krauss, Ronald M. Ren, Gang |
author_facet | Yu, Yadong Kuang, Yu-Lin Lei, Dongsheng Zhai, Xiaobo Zhang, Meng Krauss, Ronald M. Ren, Gang |
author_sort | Yu, Yadong |
collection | PubMed |
description | Human VLDLs assembled in the liver and secreted into the circulation supply energy to peripheral tissues. VLDL lipolysis yields atherogenic LDLs and VLDL remnants that strongly correlate with CVD. Although the composition of VLDL particles has been well-characterized, their 3D structure is elusive because of their variations in size, heterogeneity in composition, structural flexibility, and mobility in solution. Here, we employed cryo-electron microscopy and individual-particle electron tomography to study the 3D structure of individual VLDL particles (without averaging) at both below and above their lipid phase transition temperatures. The 3D reconstructions of VLDL and VLDL bound to antibodies revealed an unexpected polyhedral shape, in contrast to the generally accepted model of a spherical emulsion-like particle. The smaller curvature of surface lipids compared with HDL may also reduce surface hydrophobicity, resulting in lower binding affinity to the hydrophobic distal end of the N-terminal β-barrel domain of cholesteryl ester transfer protein (CETP) compared with HDL. The directional binding of CETP to HDL and VLDL may explain the function of CETP in transferring TGs and cholesteryl esters between these particles. This first visualization of the 3D structure of VLDL could improve our understanding of the role of VLDL in atherogenesis. |
format | Online Article Text |
id | pubmed-5036368 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-50363682016-10-05 Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography(1) Yu, Yadong Kuang, Yu-Lin Lei, Dongsheng Zhai, Xiaobo Zhang, Meng Krauss, Ronald M. Ren, Gang J Lipid Res Research Articles Human VLDLs assembled in the liver and secreted into the circulation supply energy to peripheral tissues. VLDL lipolysis yields atherogenic LDLs and VLDL remnants that strongly correlate with CVD. Although the composition of VLDL particles has been well-characterized, their 3D structure is elusive because of their variations in size, heterogeneity in composition, structural flexibility, and mobility in solution. Here, we employed cryo-electron microscopy and individual-particle electron tomography to study the 3D structure of individual VLDL particles (without averaging) at both below and above their lipid phase transition temperatures. The 3D reconstructions of VLDL and VLDL bound to antibodies revealed an unexpected polyhedral shape, in contrast to the generally accepted model of a spherical emulsion-like particle. The smaller curvature of surface lipids compared with HDL may also reduce surface hydrophobicity, resulting in lower binding affinity to the hydrophobic distal end of the N-terminal β-barrel domain of cholesteryl ester transfer protein (CETP) compared with HDL. The directional binding of CETP to HDL and VLDL may explain the function of CETP in transferring TGs and cholesteryl esters between these particles. This first visualization of the 3D structure of VLDL could improve our understanding of the role of VLDL in atherogenesis. The American Society for Biochemistry and Molecular Biology 2016-10 /pmc/articles/PMC5036368/ /pubmed/27538822 http://dx.doi.org/10.1194/jlr.M070375 Text en Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc. http://creativecommons.org/licenses/by/4.0/ Author’s Choice—Final version free via Creative Commons CC-BY license. |
spellingShingle | Research Articles Yu, Yadong Kuang, Yu-Lin Lei, Dongsheng Zhai, Xiaobo Zhang, Meng Krauss, Ronald M. Ren, Gang Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography(1) |
title | Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography(1) |
title_full | Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography(1) |
title_fullStr | Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography(1) |
title_full_unstemmed | Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography(1) |
title_short | Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography(1) |
title_sort | polyhedral 3d structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography(1) |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036368/ https://www.ncbi.nlm.nih.gov/pubmed/27538822 http://dx.doi.org/10.1194/jlr.M070375 |
work_keys_str_mv | AT yuyadong polyhedral3dstructureofhumanplasmaverylowdensitylipoproteinsbyindividualparticlecryoelectrontomography1 AT kuangyulin polyhedral3dstructureofhumanplasmaverylowdensitylipoproteinsbyindividualparticlecryoelectrontomography1 AT leidongsheng polyhedral3dstructureofhumanplasmaverylowdensitylipoproteinsbyindividualparticlecryoelectrontomography1 AT zhaixiaobo polyhedral3dstructureofhumanplasmaverylowdensitylipoproteinsbyindividualparticlecryoelectrontomography1 AT zhangmeng polyhedral3dstructureofhumanplasmaverylowdensitylipoproteinsbyindividualparticlecryoelectrontomography1 AT kraussronaldm polyhedral3dstructureofhumanplasmaverylowdensitylipoproteinsbyindividualparticlecryoelectrontomography1 AT rengang polyhedral3dstructureofhumanplasmaverylowdensitylipoproteinsbyindividualparticlecryoelectrontomography1 |