Cargando…

The anterior versus posterior hippocampal oscillations debate in human spatial navigation: evidence from an electrocorticographic case study

INTRODUCTION: Hippocampal oscillations have been regularly described as playing a dominant role in spatial memory and navigation in rodents. In humans, the relative role of anterior versus posterior rhythms during navigational memory is not established. METHODS: Here, we tested this hypothesis using...

Descripción completa

Detalles Bibliográficos
Autores principales: Duarte, Isabel C., Castelhano, João, Sales, Francisco, Castelo‐Branco, Miguel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036430/
https://www.ncbi.nlm.nih.gov/pubmed/27688937
http://dx.doi.org/10.1002/brb3.507
Descripción
Sumario:INTRODUCTION: Hippocampal oscillations have been regularly described as playing a dominant role in spatial memory and navigation in rodents. In humans, the relative role of anterior versus posterior rhythms during navigational memory is not established. METHODS: Here, we tested this hypothesis using direct brain ECoG recordings in the anterior and posterior hippocampus of a patient, in a navigational task requiring spatial memory. We assessed multiple oscillatory bands during encoding and retrieval phases. RESULTS: We found navigation related 1–3.5 Hz activity during retrieval, both in the anterior and posterior hippocampus. Activity between 4 and 8 Hz was identified during both encoding and retrieval, only in the anterior hippocampus. CONCLUSIONS: Our findings are consistent with the view that an anterior/posterior functional gradient is present in the hippocampus, and involves two distinct neuronal networks, supporting either encoding or retrieval processes. Although this is a single case scenario, these findings suggest that neural oscillations during spatial navigation do vary across hippocampal subregions, as a function of encoding versus retrieval processes during the mnemonic process. In this single case study, the results point to the presence of a dual involvement of multiple frequency bands across hippocampal subregions during encoding and retrieval. Although these results need generalization, they provide a new perspective on distinct physiological properties of the anterior and posterior hippocampus in human spatial navigation during encoding and retrieval.