Cargando…
Predicting secondary structures, contact numbers, and residue-wise contact orders of native protein structures from amino acid sequences using critical random networks
Predictions of one-dimensional protein structures such as secondary structures and contact numbers are useful for predicting three-dimensional structure and important for understanding the sequence-structure relationship. Here we present a new machine-learning method, critical random networks (CRNs)...
Autores principales: | Kinjo, Akira R., Nishikawa, Ken |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Biophysical Society of Japan (BSJ)
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036631/ https://www.ncbi.nlm.nih.gov/pubmed/27857554 http://dx.doi.org/10.2142/biophysics.1.67 |
Ejemplares similares
-
Predicting residue-wise contact orders in proteins by support vector regression
por: Song, Jiangning, et al.
Publicado: (2006) -
CRNPRED: highly accurate prediction of one-dimensional protein structures by large-scale critical random networks
por: Kinjo, Akira R, et al.
Publicado: (2006) -
A pairwise residue contact area-based mean force potential for discrimination of native protein structure
por: Arab, Shahriar, et al.
Publicado: (2010) -
Combining Cryo-EM Density Map and Residue Contact for Protein Secondary Structure Topologies
por: Alshammari, Maytha, et al.
Publicado: (2021) -
MSACompro: protein multiple sequence alignment using predicted secondary structure, solvent accessibility, and residue-residue contacts
por: Deng, Xin, et al.
Publicado: (2011)