Cargando…
Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data
Single-cell RNA-Sequencing (scRNA-Seq) is a revolutionary technique for discovering and describing cell types in heterogeneous tissues, yet its measurement of expression often suffers from large systematic bias. A major source of this bias is the cell cycle, which introduces large within-cell-type h...
Autores principales: | Barron, Martin, Li, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037372/ https://www.ncbi.nlm.nih.gov/pubmed/27670849 http://dx.doi.org/10.1038/srep33892 |
Ejemplares similares
-
SCIBER: a simple method for removing batch effects from single-cell RNA-sequencing data
por: Gan, Dailin, et al.
Publicado: (2022) -
SSBER: removing batch effect for single-cell RNA sequencing data
por: Zhang, Yin, et al.
Publicado: (2021) -
A sparse differential clustering algorithm for tracing cell type changes via single-cell RNA-sequencing data
por: Barron, Martin, et al.
Publicado: (2018) -
SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data
por: Young, Matthew D, et al.
Publicado: (2020) -
SIEVE: identifying robust single cell variable genes for single-cell RNA sequencing data
por: Zhang, Yinan, et al.
Publicado: (2021)