Cargando…
Identifying anticancer peptides by using improved hybrid compositions
Cancer is one of the main causes of threats to human life. Identification of anticancer peptides is important for developing effective anticancer drugs. In this paper, we developed an improved predictor to identify the anticancer peptides. The amino acid composition (AAC), the average chemical shift...
Autores principales: | Li, Feng-Min, Wang, Xiao-Qian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037382/ https://www.ncbi.nlm.nih.gov/pubmed/27670968 http://dx.doi.org/10.1038/srep33910 |
Ejemplares similares
-
A Novel Hybrid Sequence-Based Model for Identifying Anticancer Peptides
por: Xu, Lei, et al.
Publicado: (2018) -
ACPNet: A Deep Learning Network to Identify Anticancer Peptides by Hybrid Sequence Information
por: Sun, Mingwei, et al.
Publicado: (2022) -
Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides
por: Zhao, Yuhong, et al.
Publicado: (2021) -
Using the Random Forest for Identifying Key Physicochemical Properties of Amino Acids to Discriminate Anticancer and Non-Anticancer Peptides
por: Deng, Yiting, et al.
Publicado: (2023) -
iACP: a sequence-based tool for identifying anticancer peptides
por: Chen, Wei, et al.
Publicado: (2016)