Cargando…
Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons
BACKGROUND: The identification of genomic biomarkers is a key step towards improving diagnostic tests and therapies. We present a reference-free method for this task that relies on a k-mer representation of genomes and a machine learning algorithm that produces intelligible models. The method is com...
Autores principales: | Drouin, Alexandre, Giguère, Sébastien, Déraspe, Maxime, Marchand, Mario, Tyers, Michael, Loo, Vivian G., Bourgault, Anne-Marie, Laviolette, François, Corbeil, Jacques |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037627/ https://www.ncbi.nlm.nih.gov/pubmed/27671088 http://dx.doi.org/10.1186/s12864-016-2889-6 |
Ejemplares similares
-
Learning a peptide-protein binding affinity predictor with kernel ridge regression
por: Giguère, Sébastien, et al.
Publicado: (2013) -
Interpretable genotype-to-phenotype classifiers with performance guarantees
por: Drouin, Alexandre, et al.
Publicado: (2019) -
Flexible protein database based on amino acid k-mers
por: Déraspe, Maxime, et al.
Publicado: (2022) -
Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery
por: Giguère, Sébastien, et al.
Publicado: (2015) -
Phenetic Comparison of Prokaryotic Genomes Using k-mers
por: Déraspe, Maxime, et al.
Publicado: (2017)